Upload 2 files
Browse files- convert_repo_to_safetensors_sd.py +127 -30
- convert_repo_to_safetensors_sd_gr.py +128 -30
convert_repo_to_safetensors_sd.py
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
| 2 |
# *Only* converts the UNet, VAE, and Text Encoder.
|
| 3 |
# Does not convert optimizer state or any other thing.
|
| 4 |
-
# Written by jachiam
|
| 5 |
|
| 6 |
import argparse
|
| 7 |
import os.path as osp
|
|
|
|
| 8 |
|
| 9 |
import torch
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
# =================#
|
|
@@ -158,10 +159,21 @@ vae_conversion_map_attn = [
|
|
| 158 |
("proj_out.", "proj_attn."),
|
| 159 |
]
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
def reshape_weight_for_sd(w):
|
| 163 |
# convert HF linear weights to SD conv2d weights
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
|
| 167 |
def convert_vae_state_dict(vae_state_dict):
|
|
@@ -177,18 +189,92 @@ def convert_vae_state_dict(vae_state_dict):
|
|
| 177 |
mapping[k] = v
|
| 178 |
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
| 179 |
weights_to_convert = ["q", "k", "v", "proj_out"]
|
|
|
|
| 180 |
for k, v in new_state_dict.items():
|
| 181 |
for weight_name in weights_to_convert:
|
| 182 |
if f"mid.attn_1.{weight_name}.weight" in k:
|
| 183 |
print(f"Reshaping {k} for SD format")
|
| 184 |
new_state_dict[k] = reshape_weight_for_sd(v)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
return new_state_dict
|
| 186 |
|
| 187 |
|
| 188 |
# =========================#
|
| 189 |
# Text Encoder Conversion #
|
| 190 |
# =========================#
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
|
| 194 |
def convert_text_enc_state_dict(text_enc_dict):
|
|
@@ -196,45 +282,56 @@ def convert_text_enc_state_dict(text_enc_dict):
|
|
| 196 |
|
| 197 |
|
| 198 |
def convert_diffusers_to_safetensors(model_path, checkpoint_path, half = True):
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
# Convert the UNet model
|
| 215 |
-
unet_state_dict = torch.load(unet_path, map_location='cpu') if not input_safetensors else load_file(unet_path, device='cpu')
|
| 216 |
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
| 217 |
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
| 218 |
|
| 219 |
# Convert the VAE model
|
| 220 |
-
vae_state_dict = torch.load(vae_path, map_location='cpu') if not input_safetensors else load_file(vae_path, device='cpu')
|
| 221 |
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
| 222 |
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
| 223 |
|
| 224 |
-
#
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
# Put together new checkpoint
|
| 230 |
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
| 231 |
if half:
|
| 232 |
-
state_dict = {k:v.half() for k,v in state_dict.items()}
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
else:
|
| 236 |
-
state_dict = {"state_dict": state_dict}
|
| 237 |
-
torch.save(state_dict, checkpoint_path)
|
| 238 |
|
| 239 |
|
| 240 |
def download_repo(repo_id, dir_path):
|
|
@@ -258,7 +355,7 @@ if __name__ == "__main__":
|
|
| 258 |
parser = argparse.ArgumentParser()
|
| 259 |
|
| 260 |
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
| 261 |
-
parser.add_argument("--half",
|
| 262 |
|
| 263 |
args = parser.parse_args()
|
| 264 |
assert args.repo_id is not None, "Must provide a Repo ID!"
|
|
|
|
| 1 |
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
| 2 |
# *Only* converts the UNet, VAE, and Text Encoder.
|
| 3 |
# Does not convert optimizer state or any other thing.
|
|
|
|
| 4 |
|
| 5 |
import argparse
|
| 6 |
import os.path as osp
|
| 7 |
+
import re
|
| 8 |
|
| 9 |
import torch
|
| 10 |
+
from safetensors.torch import load_file, save_file
|
| 11 |
|
| 12 |
|
| 13 |
# =================#
|
|
|
|
| 159 |
("proj_out.", "proj_attn."),
|
| 160 |
]
|
| 161 |
|
| 162 |
+
# This is probably not the most ideal solution, but it does work.
|
| 163 |
+
vae_extra_conversion_map = [
|
| 164 |
+
("to_q", "q"),
|
| 165 |
+
("to_k", "k"),
|
| 166 |
+
("to_v", "v"),
|
| 167 |
+
("to_out.0", "proj_out"),
|
| 168 |
+
]
|
| 169 |
+
|
| 170 |
|
| 171 |
def reshape_weight_for_sd(w):
|
| 172 |
# convert HF linear weights to SD conv2d weights
|
| 173 |
+
if not w.ndim == 1:
|
| 174 |
+
return w.reshape(*w.shape, 1, 1)
|
| 175 |
+
else:
|
| 176 |
+
return w
|
| 177 |
|
| 178 |
|
| 179 |
def convert_vae_state_dict(vae_state_dict):
|
|
|
|
| 189 |
mapping[k] = v
|
| 190 |
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
| 191 |
weights_to_convert = ["q", "k", "v", "proj_out"]
|
| 192 |
+
keys_to_rename = {}
|
| 193 |
for k, v in new_state_dict.items():
|
| 194 |
for weight_name in weights_to_convert:
|
| 195 |
if f"mid.attn_1.{weight_name}.weight" in k:
|
| 196 |
print(f"Reshaping {k} for SD format")
|
| 197 |
new_state_dict[k] = reshape_weight_for_sd(v)
|
| 198 |
+
for weight_name, real_weight_name in vae_extra_conversion_map:
|
| 199 |
+
if f"mid.attn_1.{weight_name}.weight" in k or f"mid.attn_1.{weight_name}.bias" in k:
|
| 200 |
+
keys_to_rename[k] = k.replace(weight_name, real_weight_name)
|
| 201 |
+
for k, v in keys_to_rename.items():
|
| 202 |
+
if k in new_state_dict:
|
| 203 |
+
print(f"Renaming {k} to {v}")
|
| 204 |
+
new_state_dict[v] = reshape_weight_for_sd(new_state_dict[k])
|
| 205 |
+
del new_state_dict[k]
|
| 206 |
return new_state_dict
|
| 207 |
|
| 208 |
|
| 209 |
# =========================#
|
| 210 |
# Text Encoder Conversion #
|
| 211 |
# =========================#
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
textenc_conversion_lst = [
|
| 215 |
+
# (stable-diffusion, HF Diffusers)
|
| 216 |
+
("resblocks.", "text_model.encoder.layers."),
|
| 217 |
+
("ln_1", "layer_norm1"),
|
| 218 |
+
("ln_2", "layer_norm2"),
|
| 219 |
+
(".c_fc.", ".fc1."),
|
| 220 |
+
(".c_proj.", ".fc2."),
|
| 221 |
+
(".attn", ".self_attn"),
|
| 222 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
| 223 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
| 224 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
| 225 |
+
]
|
| 226 |
+
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
| 227 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
| 228 |
+
|
| 229 |
+
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
| 230 |
+
code2idx = {"q": 0, "k": 1, "v": 2}
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def convert_text_enc_state_dict_v20(text_enc_dict):
|
| 234 |
+
new_state_dict = {}
|
| 235 |
+
capture_qkv_weight = {}
|
| 236 |
+
capture_qkv_bias = {}
|
| 237 |
+
for k, v in text_enc_dict.items():
|
| 238 |
+
if (
|
| 239 |
+
k.endswith(".self_attn.q_proj.weight")
|
| 240 |
+
or k.endswith(".self_attn.k_proj.weight")
|
| 241 |
+
or k.endswith(".self_attn.v_proj.weight")
|
| 242 |
+
):
|
| 243 |
+
k_pre = k[: -len(".q_proj.weight")]
|
| 244 |
+
k_code = k[-len("q_proj.weight")]
|
| 245 |
+
if k_pre not in capture_qkv_weight:
|
| 246 |
+
capture_qkv_weight[k_pre] = [None, None, None]
|
| 247 |
+
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
| 248 |
+
continue
|
| 249 |
+
|
| 250 |
+
if (
|
| 251 |
+
k.endswith(".self_attn.q_proj.bias")
|
| 252 |
+
or k.endswith(".self_attn.k_proj.bias")
|
| 253 |
+
or k.endswith(".self_attn.v_proj.bias")
|
| 254 |
+
):
|
| 255 |
+
k_pre = k[: -len(".q_proj.bias")]
|
| 256 |
+
k_code = k[-len("q_proj.bias")]
|
| 257 |
+
if k_pre not in capture_qkv_bias:
|
| 258 |
+
capture_qkv_bias[k_pre] = [None, None, None]
|
| 259 |
+
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
| 260 |
+
continue
|
| 261 |
+
|
| 262 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
| 263 |
+
new_state_dict[relabelled_key] = v
|
| 264 |
+
|
| 265 |
+
for k_pre, tensors in capture_qkv_weight.items():
|
| 266 |
+
if None in tensors:
|
| 267 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
| 268 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
| 269 |
+
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
|
| 270 |
+
|
| 271 |
+
for k_pre, tensors in capture_qkv_bias.items():
|
| 272 |
+
if None in tensors:
|
| 273 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
| 274 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
| 275 |
+
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
|
| 276 |
+
|
| 277 |
+
return new_state_dict
|
| 278 |
|
| 279 |
|
| 280 |
def convert_text_enc_state_dict(text_enc_dict):
|
|
|
|
| 282 |
|
| 283 |
|
| 284 |
def convert_diffusers_to_safetensors(model_path, checkpoint_path, half = True):
|
| 285 |
+
# Path for safetensors
|
| 286 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
| 287 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
| 288 |
+
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
|
| 289 |
+
|
| 290 |
+
# Load models from safetensors if it exists, if it doesn't pytorch
|
| 291 |
+
if osp.exists(unet_path):
|
| 292 |
+
unet_state_dict = load_file(unet_path, device="cpu")
|
| 293 |
+
else:
|
| 294 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
| 295 |
+
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
| 296 |
+
|
| 297 |
+
if osp.exists(vae_path):
|
| 298 |
+
vae_state_dict = load_file(vae_path, device="cpu")
|
| 299 |
+
else:
|
| 300 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
| 301 |
+
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
| 302 |
+
|
| 303 |
+
if osp.exists(text_enc_path):
|
| 304 |
+
text_enc_dict = load_file(text_enc_path, device="cpu")
|
| 305 |
+
else:
|
| 306 |
+
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
| 307 |
+
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
| 308 |
|
| 309 |
# Convert the UNet model
|
|
|
|
| 310 |
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
| 311 |
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
| 312 |
|
| 313 |
# Convert the VAE model
|
|
|
|
| 314 |
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
| 315 |
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
| 316 |
|
| 317 |
+
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
|
| 318 |
+
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
|
| 319 |
+
|
| 320 |
+
if is_v20_model:
|
| 321 |
+
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
|
| 322 |
+
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
|
| 323 |
+
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
|
| 324 |
+
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
|
| 325 |
+
else:
|
| 326 |
+
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
| 327 |
+
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
| 328 |
|
| 329 |
# Put together new checkpoint
|
| 330 |
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
| 331 |
if half:
|
| 332 |
+
state_dict = {k: v.half() for k, v in state_dict.items()}
|
| 333 |
+
|
| 334 |
+
save_file(state_dict, checkpoint_path)
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
|
| 337 |
def download_repo(repo_id, dir_path):
|
|
|
|
| 355 |
parser = argparse.ArgumentParser()
|
| 356 |
|
| 357 |
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
| 358 |
+
parser.add_argument("--half", default=True, help="Save weights in half precision.")
|
| 359 |
|
| 360 |
args = parser.parse_args()
|
| 361 |
assert args.repo_id is not None, "Must provide a Repo ID!"
|
convert_repo_to_safetensors_sd_gr.py
CHANGED
|
@@ -1,14 +1,16 @@
|
|
| 1 |
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
| 2 |
# *Only* converts the UNet, VAE, and Text Encoder.
|
| 3 |
# Does not convert optimizer state or any other thing.
|
| 4 |
-
# Written by jachiam
|
| 5 |
|
| 6 |
import argparse
|
| 7 |
import os.path as osp
|
|
|
|
| 8 |
|
| 9 |
import torch
|
|
|
|
| 10 |
import gradio as gr
|
| 11 |
|
|
|
|
| 12 |
# =================#
|
| 13 |
# UNet Conversion #
|
| 14 |
# =================#
|
|
@@ -158,10 +160,21 @@ vae_conversion_map_attn = [
|
|
| 158 |
("proj_out.", "proj_attn."),
|
| 159 |
]
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
def reshape_weight_for_sd(w):
|
| 163 |
# convert HF linear weights to SD conv2d weights
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
|
| 167 |
def convert_vae_state_dict(vae_state_dict):
|
|
@@ -177,18 +190,92 @@ def convert_vae_state_dict(vae_state_dict):
|
|
| 177 |
mapping[k] = v
|
| 178 |
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
| 179 |
weights_to_convert = ["q", "k", "v", "proj_out"]
|
|
|
|
| 180 |
for k, v in new_state_dict.items():
|
| 181 |
for weight_name in weights_to_convert:
|
| 182 |
if f"mid.attn_1.{weight_name}.weight" in k:
|
| 183 |
print(f"Reshaping {k} for SD format")
|
| 184 |
new_state_dict[k] = reshape_weight_for_sd(v)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
return new_state_dict
|
| 186 |
|
| 187 |
|
| 188 |
# =========================#
|
| 189 |
# Text Encoder Conversion #
|
| 190 |
# =========================#
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
|
| 194 |
def convert_text_enc_state_dict(text_enc_dict):
|
|
@@ -197,45 +284,56 @@ def convert_text_enc_state_dict(text_enc_dict):
|
|
| 197 |
|
| 198 |
def convert_diffusers_to_safetensors(model_path, checkpoint_path, half = True, progress=gr.Progress(track_tqdm=True)):
|
| 199 |
progress(0, desc="Start converting...")
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
# Convert the UNet model
|
| 216 |
-
unet_state_dict = torch.load(unet_path, map_location='cpu') if not input_safetensors else load_file(unet_path)
|
| 217 |
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
| 218 |
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
| 219 |
|
| 220 |
# Convert the VAE model
|
| 221 |
-
vae_state_dict = torch.load(vae_path, map_location='cpu') if not input_safetensors else load_file(vae_path)
|
| 222 |
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
| 223 |
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
| 224 |
|
| 225 |
-
#
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
# Put together new checkpoint
|
| 231 |
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
| 232 |
if half:
|
| 233 |
-
state_dict = {k:v.half() for k,v in state_dict.items()}
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
else:
|
| 237 |
-
state_dict = {"state_dict": state_dict}
|
| 238 |
-
torch.save(state_dict, checkpoint_path)
|
| 239 |
|
| 240 |
progress(1, desc="Converted.")
|
| 241 |
|
|
@@ -295,7 +393,7 @@ if __name__ == "__main__":
|
|
| 295 |
parser = argparse.ArgumentParser()
|
| 296 |
|
| 297 |
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
| 298 |
-
parser.add_argument("--half",
|
| 299 |
|
| 300 |
args = parser.parse_args()
|
| 301 |
assert args.repo_id is not None, "Must provide a Repo ID!"
|
|
|
|
| 1 |
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
| 2 |
# *Only* converts the UNet, VAE, and Text Encoder.
|
| 3 |
# Does not convert optimizer state or any other thing.
|
|
|
|
| 4 |
|
| 5 |
import argparse
|
| 6 |
import os.path as osp
|
| 7 |
+
import re
|
| 8 |
|
| 9 |
import torch
|
| 10 |
+
from safetensors.torch import load_file, save_file
|
| 11 |
import gradio as gr
|
| 12 |
|
| 13 |
+
|
| 14 |
# =================#
|
| 15 |
# UNet Conversion #
|
| 16 |
# =================#
|
|
|
|
| 160 |
("proj_out.", "proj_attn."),
|
| 161 |
]
|
| 162 |
|
| 163 |
+
# This is probably not the most ideal solution, but it does work.
|
| 164 |
+
vae_extra_conversion_map = [
|
| 165 |
+
("to_q", "q"),
|
| 166 |
+
("to_k", "k"),
|
| 167 |
+
("to_v", "v"),
|
| 168 |
+
("to_out.0", "proj_out"),
|
| 169 |
+
]
|
| 170 |
+
|
| 171 |
|
| 172 |
def reshape_weight_for_sd(w):
|
| 173 |
# convert HF linear weights to SD conv2d weights
|
| 174 |
+
if not w.ndim == 1:
|
| 175 |
+
return w.reshape(*w.shape, 1, 1)
|
| 176 |
+
else:
|
| 177 |
+
return w
|
| 178 |
|
| 179 |
|
| 180 |
def convert_vae_state_dict(vae_state_dict):
|
|
|
|
| 190 |
mapping[k] = v
|
| 191 |
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
| 192 |
weights_to_convert = ["q", "k", "v", "proj_out"]
|
| 193 |
+
keys_to_rename = {}
|
| 194 |
for k, v in new_state_dict.items():
|
| 195 |
for weight_name in weights_to_convert:
|
| 196 |
if f"mid.attn_1.{weight_name}.weight" in k:
|
| 197 |
print(f"Reshaping {k} for SD format")
|
| 198 |
new_state_dict[k] = reshape_weight_for_sd(v)
|
| 199 |
+
for weight_name, real_weight_name in vae_extra_conversion_map:
|
| 200 |
+
if f"mid.attn_1.{weight_name}.weight" in k or f"mid.attn_1.{weight_name}.bias" in k:
|
| 201 |
+
keys_to_rename[k] = k.replace(weight_name, real_weight_name)
|
| 202 |
+
for k, v in keys_to_rename.items():
|
| 203 |
+
if k in new_state_dict:
|
| 204 |
+
print(f"Renaming {k} to {v}")
|
| 205 |
+
new_state_dict[v] = reshape_weight_for_sd(new_state_dict[k])
|
| 206 |
+
del new_state_dict[k]
|
| 207 |
return new_state_dict
|
| 208 |
|
| 209 |
|
| 210 |
# =========================#
|
| 211 |
# Text Encoder Conversion #
|
| 212 |
# =========================#
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
textenc_conversion_lst = [
|
| 216 |
+
# (stable-diffusion, HF Diffusers)
|
| 217 |
+
("resblocks.", "text_model.encoder.layers."),
|
| 218 |
+
("ln_1", "layer_norm1"),
|
| 219 |
+
("ln_2", "layer_norm2"),
|
| 220 |
+
(".c_fc.", ".fc1."),
|
| 221 |
+
(".c_proj.", ".fc2."),
|
| 222 |
+
(".attn", ".self_attn"),
|
| 223 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
| 224 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
| 225 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
| 226 |
+
]
|
| 227 |
+
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
| 228 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
| 229 |
+
|
| 230 |
+
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
| 231 |
+
code2idx = {"q": 0, "k": 1, "v": 2}
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def convert_text_enc_state_dict_v20(text_enc_dict):
|
| 235 |
+
new_state_dict = {}
|
| 236 |
+
capture_qkv_weight = {}
|
| 237 |
+
capture_qkv_bias = {}
|
| 238 |
+
for k, v in text_enc_dict.items():
|
| 239 |
+
if (
|
| 240 |
+
k.endswith(".self_attn.q_proj.weight")
|
| 241 |
+
or k.endswith(".self_attn.k_proj.weight")
|
| 242 |
+
or k.endswith(".self_attn.v_proj.weight")
|
| 243 |
+
):
|
| 244 |
+
k_pre = k[: -len(".q_proj.weight")]
|
| 245 |
+
k_code = k[-len("q_proj.weight")]
|
| 246 |
+
if k_pre not in capture_qkv_weight:
|
| 247 |
+
capture_qkv_weight[k_pre] = [None, None, None]
|
| 248 |
+
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
| 249 |
+
continue
|
| 250 |
+
|
| 251 |
+
if (
|
| 252 |
+
k.endswith(".self_attn.q_proj.bias")
|
| 253 |
+
or k.endswith(".self_attn.k_proj.bias")
|
| 254 |
+
or k.endswith(".self_attn.v_proj.bias")
|
| 255 |
+
):
|
| 256 |
+
k_pre = k[: -len(".q_proj.bias")]
|
| 257 |
+
k_code = k[-len("q_proj.bias")]
|
| 258 |
+
if k_pre not in capture_qkv_bias:
|
| 259 |
+
capture_qkv_bias[k_pre] = [None, None, None]
|
| 260 |
+
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
| 261 |
+
continue
|
| 262 |
+
|
| 263 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
| 264 |
+
new_state_dict[relabelled_key] = v
|
| 265 |
+
|
| 266 |
+
for k_pre, tensors in capture_qkv_weight.items():
|
| 267 |
+
if None in tensors:
|
| 268 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
| 269 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
| 270 |
+
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
|
| 271 |
+
|
| 272 |
+
for k_pre, tensors in capture_qkv_bias.items():
|
| 273 |
+
if None in tensors:
|
| 274 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
| 275 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
| 276 |
+
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
|
| 277 |
+
|
| 278 |
+
return new_state_dict
|
| 279 |
|
| 280 |
|
| 281 |
def convert_text_enc_state_dict(text_enc_dict):
|
|
|
|
| 284 |
|
| 285 |
def convert_diffusers_to_safetensors(model_path, checkpoint_path, half = True, progress=gr.Progress(track_tqdm=True)):
|
| 286 |
progress(0, desc="Start converting...")
|
| 287 |
+
# Path for safetensors
|
| 288 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
| 289 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
| 290 |
+
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
|
| 291 |
+
|
| 292 |
+
# Load models from safetensors if it exists, if it doesn't pytorch
|
| 293 |
+
if osp.exists(unet_path):
|
| 294 |
+
unet_state_dict = load_file(unet_path, device="cpu")
|
| 295 |
+
else:
|
| 296 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
| 297 |
+
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
| 298 |
+
|
| 299 |
+
if osp.exists(vae_path):
|
| 300 |
+
vae_state_dict = load_file(vae_path, device="cpu")
|
| 301 |
+
else:
|
| 302 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
| 303 |
+
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
| 304 |
+
|
| 305 |
+
if osp.exists(text_enc_path):
|
| 306 |
+
text_enc_dict = load_file(text_enc_path, device="cpu")
|
| 307 |
+
else:
|
| 308 |
+
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
| 309 |
+
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
| 310 |
|
| 311 |
# Convert the UNet model
|
|
|
|
| 312 |
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
| 313 |
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
| 314 |
|
| 315 |
# Convert the VAE model
|
|
|
|
| 316 |
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
| 317 |
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
| 318 |
|
| 319 |
+
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
|
| 320 |
+
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
|
| 321 |
+
|
| 322 |
+
if is_v20_model:
|
| 323 |
+
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
|
| 324 |
+
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
|
| 325 |
+
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
|
| 326 |
+
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
|
| 327 |
+
else:
|
| 328 |
+
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
| 329 |
+
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
| 330 |
|
| 331 |
# Put together new checkpoint
|
| 332 |
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
| 333 |
if half:
|
| 334 |
+
state_dict = {k: v.half() for k, v in state_dict.items()}
|
| 335 |
+
|
| 336 |
+
save_file(state_dict, checkpoint_path)
|
|
|
|
|
|
|
|
|
|
| 337 |
|
| 338 |
progress(1, desc="Converted.")
|
| 339 |
|
|
|
|
| 393 |
parser = argparse.ArgumentParser()
|
| 394 |
|
| 395 |
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
| 396 |
+
parser.add_argument("--half", default=True, help="Save weights in half precision.")
|
| 397 |
|
| 398 |
args = parser.parse_args()
|
| 399 |
assert args.repo_id is not None, "Must provide a Repo ID!"
|