Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
# LangChain & LangGraph
|
| 9 |
+
from langgraph.graph import StateGraph
|
| 10 |
+
from langgraph.checkpoint.memory import MemorySaver
|
| 11 |
+
from langchain.tools import tool
|
| 12 |
+
from langchain_community.vectorstores import FAISS
|
| 13 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 14 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 15 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 16 |
+
|
| 17 |
+
# Web Search
|
| 18 |
+
from duckduckgo_search import DDGS
|
| 19 |
+
|
| 20 |
+
# Llama GGUF Model Loader
|
| 21 |
+
from llama_cpp import Llama
|
| 22 |
+
|
| 23 |
+
# ------------------------------
|
| 24 |
+
# ๐น Setup Logging
|
| 25 |
+
# ------------------------------
|
| 26 |
+
logging.basicConfig(level=logging.INFO)
|
| 27 |
+
logger = logging.getLogger(__name__)
|
| 28 |
+
|
| 29 |
+
# ------------------------------
|
| 30 |
+
# ๐น Load GGUF Model with llama-cpp-python
|
| 31 |
+
# ------------------------------
|
| 32 |
+
model_path = "./Bio-Medical-MultiModal-Llama-3-8B-V1.i1-Q6_K.gguf" # Update with actual GGUF model path
|
| 33 |
+
llm = Llama(model_path=model_path, n_ctx=2048, n_gpu_layers=35) # Optimized for Hugging Face T4 GPU
|
| 34 |
+
|
| 35 |
+
logger.info("Llama GGUF Model Loaded Successfully.")
|
| 36 |
+
|
| 37 |
+
# ------------------------------
|
| 38 |
+
# ๐น Define Expert System Prompts
|
| 39 |
+
# ------------------------------
|
| 40 |
+
GP_PROMPT = "You are a General Practitioner AI Assistant. Answer medical questions with scientifically accurate information."
|
| 41 |
+
RADIOLOGY_PROMPT = "You are a Radiology AI expert. Analyze medical images and provide diagnostic insights."
|
| 42 |
+
WEBSEARCH_PROMPT = "You are a Web Search AI. Retrieve up-to-date medical information."
|
| 43 |
+
|
| 44 |
+
# ------------------------------
|
| 45 |
+
# ๐น FAISS Vector Store for RAG
|
| 46 |
+
# ------------------------------
|
| 47 |
+
_vector_store_cache = None
|
| 48 |
+
|
| 49 |
+
def load_vectorstore(pdf_path="medical_docs.pdf"):
|
| 50 |
+
"""Loads PDF files into a FAISS vector store for RAG."""
|
| 51 |
+
try:
|
| 52 |
+
loader = PyPDFLoader(pdf_path)
|
| 53 |
+
documents = loader.load()
|
| 54 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=50)
|
| 55 |
+
docs = text_splitter.split_documents(documents)
|
| 56 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 57 |
+
vector_store = FAISS.from_documents(docs, embeddings)
|
| 58 |
+
logger.info(f"Vector store loaded with {len(docs)} documents.")
|
| 59 |
+
return vector_store
|
| 60 |
+
except Exception as e:
|
| 61 |
+
logger.error(f"Error loading vector store: {str(e)}")
|
| 62 |
+
return None
|
| 63 |
+
|
| 64 |
+
def update_vector_store(pdf_file):
|
| 65 |
+
"""Updates FAISS vector store when a new PDF is uploaded."""
|
| 66 |
+
pdf_path = "uploaded_medical_docs.pdf"
|
| 67 |
+
try:
|
| 68 |
+
with open(pdf_path, "wb") as f:
|
| 69 |
+
f.write(pdf_file.read())
|
| 70 |
+
vector_store = load_vectorstore(pdf_path)
|
| 71 |
+
os.remove(pdf_path) # Clean up
|
| 72 |
+
return vector_store
|
| 73 |
+
except Exception as e:
|
| 74 |
+
logger.error(f"Error updating vector store: {str(e)}")
|
| 75 |
+
return _vector_store_cache # Fallback to cached version
|
| 76 |
+
|
| 77 |
+
if os.path.exists("medical_docs.pdf"):
|
| 78 |
+
_vector_store_cache = load_vectorstore("medical_docs.pdf")
|
| 79 |
+
else:
|
| 80 |
+
_vector_store_cache = None
|
| 81 |
+
|
| 82 |
+
vector_store = _vector_store_cache
|
| 83 |
+
|
| 84 |
+
# ------------------------------
|
| 85 |
+
# ๐น Define AI Tools
|
| 86 |
+
# ------------------------------
|
| 87 |
+
@tool
|
| 88 |
+
def analyze_medical_image(image_path: str):
|
| 89 |
+
"""Analyzes a medical image and returns a diagnostic explanation."""
|
| 90 |
+
try:
|
| 91 |
+
image = Image.open(image_path)
|
| 92 |
+
except Exception as e:
|
| 93 |
+
logger.error(f"Error opening image: {str(e)}")
|
| 94 |
+
return "Error processing image."
|
| 95 |
+
|
| 96 |
+
# Process image using Llama GGUF model
|
| 97 |
+
output = llm(f"Analyze this medical image and provide a diagnosis:\n{image}")
|
| 98 |
+
return output["choices"][0]["text"]
|
| 99 |
+
|
| 100 |
+
@tool
|
| 101 |
+
def retrieve_medical_knowledge(query: str):
|
| 102 |
+
"""Retrieves medical knowledge from FAISS vector store."""
|
| 103 |
+
if vector_store is None:
|
| 104 |
+
return "No external medical knowledge available."
|
| 105 |
+
|
| 106 |
+
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 107 |
+
docs = retriever.get_relevant_documents(query)
|
| 108 |
+
citations = [f"[{i+1}] {doc.metadata.get('source', 'Unknown Source')}" for i, doc in enumerate(docs)]
|
| 109 |
+
citations_text = "\n".join(citations)
|
| 110 |
+
content = "\n".join([doc.page_content for doc in docs])
|
| 111 |
+
return content + f"\n\n**Citations:**\n{citations_text}"
|
| 112 |
+
|
| 113 |
+
@tool
|
| 114 |
+
def web_search(query: str):
|
| 115 |
+
"""Performs a real-time web search using DuckDuckGo."""
|
| 116 |
+
try:
|
| 117 |
+
results = ddg(query, max_results=3)
|
| 118 |
+
summary = "\n".join([f"{r['title']}: {r['body']} ({r['href']})" for r in results]) or "No relevant results found."
|
| 119 |
+
return summary
|
| 120 |
+
except Exception as e:
|
| 121 |
+
logger.error(f"Web search error: {str(e)}")
|
| 122 |
+
return "Error retrieving web search results."
|
| 123 |
+
|
| 124 |
+
# ------------------------------
|
| 125 |
+
# ๐น Define Multi-Agent Workflow (LangGraph)
|
| 126 |
+
# ------------------------------
|
| 127 |
+
class AgentState:
|
| 128 |
+
def __init__(self, query="", response="", image_path=None, expert=""):
|
| 129 |
+
self.query = query
|
| 130 |
+
self.response = response
|
| 131 |
+
self.image_path = image_path
|
| 132 |
+
self.expert = expert # "GP", "Radiology", "Web Search"
|
| 133 |
+
|
| 134 |
+
# Memory checkpointing
|
| 135 |
+
checkpointer = MemorySaver()
|
| 136 |
+
|
| 137 |
+
# Create LangGraph state graph
|
| 138 |
+
agent_graph = StateGraph(AgentState)
|
| 139 |
+
|
| 140 |
+
def route_query(state: AgentState):
|
| 141 |
+
"""Determines which AI expert should handle the query."""
|
| 142 |
+
if state.image_path:
|
| 143 |
+
return "radiology_specialist"
|
| 144 |
+
elif any(word in state.query.lower() for word in ["latest", "update", "breaking news"]):
|
| 145 |
+
return "web_search_expert"
|
| 146 |
+
else:
|
| 147 |
+
return "general_practitioner"
|
| 148 |
+
|
| 149 |
+
def general_practitioner(state: AgentState):
|
| 150 |
+
"""GP Expert: Handles medical text queries and retrieves knowledge."""
|
| 151 |
+
query = state.query
|
| 152 |
+
retrieved_info = retrieve_medical_knowledge.run(query)
|
| 153 |
+
output = llm(f"{GP_PROMPT}\nQ: {query}\nA:")
|
| 154 |
+
return AgentState(query=query, response=output["choices"][0]["text"] + "\n\n" + retrieved_info, expert="GP")
|
| 155 |
+
|
| 156 |
+
def radiology_specialist(state: AgentState):
|
| 157 |
+
"""Radiology Expert: Analyzes medical images."""
|
| 158 |
+
image_analysis = analyze_medical_image.run(state.image_path)
|
| 159 |
+
return AgentState(query=state.query, response=image_analysis, expert="Radiology")
|
| 160 |
+
|
| 161 |
+
def web_search_expert(state: AgentState):
|
| 162 |
+
"""Web Search Expert: Retrieves the latest information."""
|
| 163 |
+
search_result = web_search.run(state.query)
|
| 164 |
+
return AgentState(query=state.query, response=search_result, expert="Web Search")
|
| 165 |
+
|
| 166 |
+
# Add nodes
|
| 167 |
+
agent_graph.add_node("general_practitioner", general_practitioner)
|
| 168 |
+
agent_graph.add_node("radiology_specialist", radiology_specialist)
|
| 169 |
+
agent_graph.add_node("web_search_expert", web_search_expert)
|
| 170 |
+
agent_graph.add_conditional_edges("route_query", route_query, {"general_practitioner", "radiology_specialist", "web_search_expert"})
|
| 171 |
+
agent_graph.set_entry_point("route_query")
|
| 172 |
+
|
| 173 |
+
# Compile graph
|
| 174 |
+
app = agent_graph.compile(checkpointer=checkpointer)
|
| 175 |
+
|
| 176 |
+
# ------------------------------
|
| 177 |
+
# ๐น Gradio Interface
|
| 178 |
+
# ------------------------------
|
| 179 |
+
with gr.Blocks(title="Llama3-Med Multi-Agent AI") as demo:
|
| 180 |
+
gr.Markdown("# ๐ฅ AI Medical Assistant")
|
| 181 |
+
|
| 182 |
+
with gr.Row():
|
| 183 |
+
user_input = gr.Textbox(label="Your Question")
|
| 184 |
+
image_file = gr.Image(label="Upload Medical Image (Optional)", type="file")
|
| 185 |
+
pdf_file = gr.File(label="Upload PDF (Optional)", file_types=[".pdf"])
|
| 186 |
+
submit_btn = gr.Button("Submit")
|
| 187 |
+
output_text = gr.Textbox(label="Assistant's Response", interactive=False)
|
| 188 |
+
|
| 189 |
+
submit_btn.click(fn=chat_with_agent, inputs=[user_input, image_file, pdf_file], outputs=output_text)
|
| 190 |
+
|
| 191 |
+
if __name__ == "__main__":
|
| 192 |
+
demo.launch()
|