ZainabFatimaa commited on
Commit
f90e322
·
verified ·
1 Parent(s): 1b18cbe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -361
README.md CHANGED
@@ -1,317 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
  # 🚀 AI-Powered Resume Analyzer
2
 
3
  A comprehensive resume analysis tool built with Streamlit that provides detailed insights, ATS scoring, and actionable feedback for job seekers.
4
 
5
- ## 🔍 Usage Guide
6
-
7
- ### Step 1: Upload Resume
8
- 1. Select your target job role from the sidebar
9
- 2. Upload your resume file (PDF, DOCX, or TXT)
10
- 3. Wait for automatic text extraction and processing
11
-
12
- ### Step 2: Explore Analysis
13
- Navigate through the five main analysis tabs:
14
-
15
- **📊 Overview Tab**
16
- - View basic resume statistics
17
- - Read your AI-generated persona summary
18
- - Explore the word cloud of key terms
19
-
20
- **🎯 Skills Analysis Tab**
21
- - Review detected technical and soft skills
22
- - Check job role match percentage
23
- - Identify missing keywords for improvement
24
-
25
- **📝 Section Breakdown Tab**
26
- - Examine each resume section individually
27
- - Identify missing or weak sections
28
- - Review section-specific content
29
-
30
- **🔍 ATS Analysis Tab**
31
- - View your ATS-friendliness score
32
- - Check grammar and language quality
33
- - Get specific improvement recommendations
34
-
35
- **📋 Report & Suggestions Tab**
36
- - See comprehensive scoring metrics
37
- - Review detailed feedback and suggestions
38
- - Download your analysis report
39
-
40
- ### Step 3: Implement Improvements
41
- Use the actionable insights to:
42
- - Add missing keywords for your target role
43
- - Improve section structure and content
44
- - Enhance ATS compatibility
45
- - Strengthen weak areas identified
46
-
47
- ## 🎯 Best Practices for Resume Optimization
48
-
49
- ### ATS Optimization Tips
50
- - Use standard section headings (Experience, Education, Skills)
51
- - Include relevant keywords naturally in context
52
- - Use bullet points for easy scanning
53
- - Keep formatting simple and clean
54
- - Include contact information prominently
55
-
56
- ### Content Enhancement
57
- - Quantify achievements with numbers and percentages
58
- - Use action verbs to start bullet points
59
- - Tailor content to specific job roles
60
- - Include relevant projects and certifications
61
- - Balance technical and soft skills
62
-
63
- ### Keyword Strategy
64
- - Research job descriptions for target roles
65
- - Include industry-specific terminology
66
- - Use variations of important keywords
67
- - Don't stuff keywords unnaturally
68
- - Focus on skills you actually possess
69
-
70
- ## 🔧 Customization Options
71
-
72
- ### Adding New Job Roles
73
- To add support for additional job roles, modify the `job_keywords` dictionary in the `ResumeAnalyzer` class:
74
-
75
- ```python
76
- self.job_keywords = {
77
- "Your New Role": ["keyword1", "keyword2", "keyword3", ...],
78
- # ... existing roles
79
- }
80
- ```
81
-
82
- ### Extending Skills Database
83
- Add new skills to the technical or soft skills lists:
84
-
85
- ```python
86
- self.technical_skills = [
87
- # ... existing skills
88
- "your_new_skill",
89
- ]
90
-
91
- self.soft_skills = [
92
- # ... existing skills
93
- "your_new_soft_skill",
94
- ]
95
- ```
96
-
97
- ### Custom Scoring Logic
98
- Modify the `calculate_ats_score` method to adjust scoring criteria:
99
-
100
- ```python
101
- def calculate_ats_score(self, text, sections):
102
- score = 0
103
- # Add your custom scoring logic here
104
- return min(score, 100)
105
- ```
106
-
107
- ## 🛠️ Development Setup
108
-
109
- ### Prerequisites
110
- - Python 3.9+
111
- - pip package manager
112
- - Git (for version control)
113
-
114
- ### Environment Setup
115
- ```bash
116
- # Create virtual environment
117
- python -m venv venv
118
-
119
- # Activate virtual environment
120
- # On Windows:
121
- venv\Scripts\activate
122
- # On macOS/Linux:
123
- source venv/bin/activate
124
-
125
- # Install dependencies
126
- pip install -r requirements.txt
127
-
128
- # Download required models
129
- python -m spacy download en_core_web_sm
130
- ```
131
-
132
- ### Running Tests
133
- ```bash
134
- # Run the application locally
135
- streamlit run src/app.py
136
-
137
- # Access at http://localhost:8501
138
- ```
139
-
140
- ## 📦 Deployment Options
141
-
142
- ### Hugging Face Spaces (Recommended)
143
- 1. Create account on [Hugging Face](https://huggingface.co/)
144
- 2. Create new Space with Streamlit SDK
145
- 3. Upload all project files
146
- 4. Configure environment variables if needed
147
- 5. Deploy automatically
148
-
149
- ### Streamlit Cloud
150
- 1. Connect your GitHub repository
151
- 2. Select the main branch
152
- 3. Set `src/app.py` as the main file
153
- 4. Deploy with one click
154
-
155
- ### Docker Deployment
156
- ```bash
157
- # Build the Docker image
158
- docker build -t resume-analyzer .
159
-
160
- # Run the container
161
- docker run -p 7860:7860 resume-analyzer
162
- ```
163
-
164
- ### Local Server
165
- ```bash
166
- # Install dependencies
167
- pip install -r requirements.txt
168
-
169
- # Run with custom port
170
- streamlit run src/app.py --server.port 8080
171
- ```
172
-
173
- ## 🚀 Performance Optimization
174
-
175
- ### Memory Management
176
- - Text processing is limited to prevent memory issues
177
- - Large files are processed in chunks
178
- - Caching is used for expensive operations
179
-
180
- ### Speed Improvements
181
- - NLTK and spaCy models are cached
182
- - Text preprocessing is optimized
183
- - Lazy loading for heavy components
184
-
185
- ### Scalability Considerations
186
- - Stateless design for easy horizontal scaling
187
- - Minimal external dependencies
188
- - Efficient data structures for large text processing
189
-
190
- ## 🔐 Security & Privacy
191
-
192
- ### Data Handling
193
- - No resume data is stored permanently
194
- - Processing happens in memory only
195
- - No external API calls for sensitive data
196
- - User files are processed locally
197
-
198
- ### Best Practices
199
- - Input validation for uploaded files
200
- - File size limits to prevent abuse
201
- - Error handling for malformed files
202
- - Secure text processing pipelines
203
-
204
- ## 🐛 Troubleshooting
205
-
206
- ### Common Issues
207
-
208
- **Issue**: "spaCy model not found"
209
- ```bash
210
- # Solution:
211
- python -m spacy download en_core_web_sm
212
- ```
213
-
214
- **Issue**: "NLTK data not found"
215
- ```bash
216
- # Solution:
217
- python -c "import nltk; nltk.download('punkt'); nltk.download('stopwords'); nltk.download('wordnet')"
218
- ```
219
-
220
- **Issue**: "Grammar tool initialization failed"
221
- - This is non-critical; the app will continue without grammar checking
222
- - Ensure internet connection for language-tool-python
223
-
224
- **Issue**: "PDF extraction failed"
225
- - Try using a different PDF file
226
- - Some PDF formats may not be supported
227
- - Convert to DOCX or TXT as alternative
228
-
229
- ### Performance Issues
230
- - Large files (>5MB) may process slowly
231
- - Reduce file size or split into sections
232
- - Use TXT format for fastest processing
233
-
234
- ## 📊 Analytics & Metrics
235
-
236
- ### Usage Statistics
237
- The application tracks:
238
- - File upload success rates
239
- - Processing time per file type
240
- - Most common job role selections
241
- - Average scores by category
242
-
243
- ### Performance Metrics
244
- - Average processing time: 2-5 seconds
245
- - Supported file size: Up to 10MB
246
- - Accuracy rate: 85-95% for section detection
247
- - Language support: English (extendable)
248
-
249
- ## 🔮 Future Enhancements
250
-
251
- ### Planned Features
252
- - **Multi-language Support**: Extend beyond English
253
- - **Advanced AI Integration**: GPT-based feedback generation
254
- - **Resume Templates**: Downloadable optimized templates
255
- - **Batch Processing**: Analyze multiple resumes simultaneously
256
- - **API Integration**: REST API for programmatic access
257
-
258
- ### Advanced Analytics
259
- - **Trend Analysis**: Track improvement over time
260
- - **Benchmarking**: Compare against industry standards
261
- - **Predictive Scoring**: ML-based success probability
262
- - **Personalized Recommendations**: AI-driven suggestions
263
-
264
- ### Integration Possibilities
265
- - **LinkedIn Integration**: Import profile data
266
- - **Job Board APIs**: Real-time job matching
267
- - **ATS System Integration**: Direct compatibility testing
268
- - **Career Platforms**: Seamless workflow integration
269
-
270
- ## 🤝 Contributing
271
-
272
- ### How to Contribute
273
- 1. Fork the repository
274
- 2. Create a feature branch
275
- 3. Make your changes
276
- 4. Add tests if applicable
277
- 5. Submit a pull request
278
-
279
- ### Development Guidelines
280
- - Follow PEP 8 style guidelines
281
- - Add docstrings to new functions
282
- - Update requirements.txt for new dependencies
283
- - Test with multiple file formats
284
-
285
- ### Areas for Contribution
286
- - New job role keyword sets
287
- - Additional file format support
288
- - UI/UX improvements
289
- - Performance optimizations
290
- - Bug fixes and error handling
291
-
292
- ## 📝 License
293
-
294
- This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
295
-
296
- ## 🙏 Acknowledgments
297
-
298
- - **Streamlit Team**: For the amazing framework
299
- - **spaCy & NLTK**: For NLP capabilities
300
- - **Hugging Face**: For free hosting platform
301
- - **Open Source Community**: For the various libraries used
302
-
303
- ## 📞 Support
304
-
305
- For questions, issues, or suggestions:
306
- - Create an issue on GitHub
307
- - Check the troubleshooting section
308
- - Review the documentation
309
-
310
- ---
311
-
312
- **Made with ❤️ for job seekers worldwide**
313
-
314
- *Help us improve by providing feedback and suggestions!*✨ Features
315
 
316
  ### Core Functionality
317
  - **Multi-format Support**: Upload PDF, DOCX, or TXT resumes
@@ -340,46 +43,16 @@ For questions, issues, or suggestions:
340
  - Marketing Manager
341
  - Data Analyst
342
 
343
- ## 🚀 Quick Start
344
-
345
- ### Local Development
346
-
347
- 1. **Clone the repository**
348
- ```bash
349
- git clone <your-repo-url>
350
- cd resume-analyzer
351
- ```
352
 
353
- 2. **Install dependencies**
354
- ```bash
355
- pip install -r requirements.txt
356
- ```
357
-
358
- 3. **Download required models**
359
- ```bash
360
- python -m spacy download en_core_web_sm
361
- python -c "import nltk; nltk.download('punkt'); nltk.download('stopwords'); nltk.download('wordnet')"
362
- ```
363
-
364
- 4. **Run the application**
365
- ```bash
366
- streamlit run src/app.py
367
- ```
368
-
369
- ### Hugging Face Spaces Deployment
370
-
371
- 1. **Create a new Space** on Hugging Face Spaces
372
- 2. **Select "Streamlit"** as the SDK
373
- 3. **Upload the files**:
374
- - `src/app.py`
375
- - `requirements.txt`
376
- - `Dockerfile` (optional, but recommended)
377
- - `README.md`
378
-
379
- 4. **Configure Space settings**:
380
- - Set Python version to 3.9
381
- - Set main file path to `src/app.py`
382
- - Enable hardware acceleration if needed
383
 
384
  ## 📊 Analysis Features
385
 
@@ -411,7 +84,7 @@ streamlit run src/app.py
411
  - Actionable improvement suggestions
412
  - Downloadable analysis reports
413
 
414
- ## 🔧 Technical Architecture
415
 
416
  ### Libraries Used
417
  - **Streamlit**: Web interface and deployment
@@ -424,14 +97,6 @@ streamlit run src/app.py
424
  - **scikit-learn**: Machine learning utilities
425
  - **plotly/matplotlib**: Data visualization
426
 
427
- ### Key Components
428
- - `ResumeAnalyzer`: Main analysis class
429
- - Text extraction methods for different file types
430
- - NLP preprocessing and tokenization
431
- - Section parsing with regex patterns
432
- - Keyword matching algorithms
433
- - Scoring and evaluation systems
434
-
435
  ## 📈 Scoring Methodology
436
 
437
  ### ATS Score (0-100)
@@ -446,13 +111,57 @@ streamlit run src/app.py
446
  - Industry-specific term recognition
447
  - Skills alignment assessment
448
 
449
- ## 🎨 UI/UX Features
450
 
 
451
  - **Responsive Design**: Works on desktop and mobile
452
  - **Interactive Tabs**: Organized analysis sections
453
  - **Progress Indicators**: Visual feedback during processing
454
  - **Color-coded Metrics**: Intuitive score visualization
455
  - **Badge System**: Clean skill and keyword display
456
- - **Download Integration**: Easy report export
457
 
458
- ##
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Resume-Analyzer
3
+ emoji: 📄
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: streamlit
7
+ sdk_version: 1.28.0
8
+ app_file: src/app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
  # 🚀 AI-Powered Resume Analyzer
14
 
15
  A comprehensive resume analysis tool built with Streamlit that provides detailed insights, ATS scoring, and actionable feedback for job seekers.
16
 
17
+ ## Features
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  ### Core Functionality
20
  - **Multi-format Support**: Upload PDF, DOCX, or TXT resumes
 
43
  - Marketing Manager
44
  - Data Analyst
45
 
46
+ ## 🚀 How to Use
 
 
 
 
 
 
 
 
47
 
48
+ 1. **Select Job Role**: Choose your target position from the sidebar
49
+ 2. **Upload Resume**: Support for PDF, DOCX, and TXT formats
50
+ 3. **Get Analysis**: Comprehensive scoring and feedback across 5 categories:
51
+ - 📊 Overview & AI Summary
52
+ - 🎯 Skills Analysis & Job Matching
53
+ - 📝 Section Breakdown
54
+ - 🔍 ATS Compatibility
55
+ - 📋 Detailed Report & Suggestions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  ## 📊 Analysis Features
58
 
 
84
  - Actionable improvement suggestions
85
  - Downloadable analysis reports
86
 
87
+ ## 🔧 Technical Stack
88
 
89
  ### Libraries Used
90
  - **Streamlit**: Web interface and deployment
 
97
  - **scikit-learn**: Machine learning utilities
98
  - **plotly/matplotlib**: Data visualization
99
 
 
 
 
 
 
 
 
 
100
  ## 📈 Scoring Methodology
101
 
102
  ### ATS Score (0-100)
 
111
  - Industry-specific term recognition
112
  - Skills alignment assessment
113
 
114
+ ## 🎨 Key Features
115
 
116
+ ### Interactive UI
117
  - **Responsive Design**: Works on desktop and mobile
118
  - **Interactive Tabs**: Organized analysis sections
119
  - **Progress Indicators**: Visual feedback during processing
120
  - **Color-coded Metrics**: Intuitive score visualization
121
  - **Badge System**: Clean skill and keyword display
 
122
 
123
+ ### Smart Analysis
124
+ - **AI-Powered Summaries**: Professional persona generation
125
+ - **Contextual Feedback**: Role-specific recommendations
126
+ - **Visual Analytics**: Charts, graphs, and word clouds
127
+ - **Export Functionality**: Download comprehensive reports
128
+
129
+ ## 🔍 Usage Tips
130
+
131
+ ### For Best Results
132
+ - Upload high-quality, text-based files (avoid scanned images)
133
+ - Ensure your resume includes standard sections
134
+ - Use the role selector to get targeted keyword analysis
135
+ - Review all analysis tabs for comprehensive insights
136
+
137
+ ### Optimization Recommendations
138
+ - Include relevant keywords naturally in context
139
+ - Use standard section headings (Experience, Education, Skills)
140
+ - Add quantifiable achievements with numbers
141
+ - Balance technical and soft skills
142
+ - Keep formatting clean and ATS-friendly
143
+
144
+ ## 🔐 Privacy & Security
145
+
146
+ - **No Data Storage**: Resume content is processed in memory only
147
+ - **Local Processing**: All analysis happens on the server without external API calls
148
+ - **Secure Handling**: Files are processed securely and not retained
149
+ - **Privacy First**: Your resume data remains confidential
150
+
151
+ ## 🤝 Perfect For
152
+
153
+ - **Job Seekers**: Optimize resumes for specific roles
154
+ - **Career Counselors**: Provide data-driven feedback
155
+ - **Students**: Improve academic and entry-level resumes
156
+ - **Professionals**: Enhance career transition materials
157
+ - **Recruiters**: Quick candidate assessment tool
158
+
159
+ ## 🚀 Get Started
160
+
161
+ Simply upload your resume above and select your target job role to receive comprehensive analysis and actionable insights!
162
+
163
+ ---
164
+
165
+ **Made with ❤️ for job seekers worldwide**
166
+
167
+ *Help us improve by providing feedback and suggestions!*