Spaces:
Build error
Build error
| import streamlit as st | |
| from transformers import pipeline | |
| access = "hf_" | |
| token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa" | |
| # Load the text classification model pipeline | |
| analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis') | |
| classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token) | |
| st.set_page_config(page_title="Financial News Analysis", page_icon="♕") | |
| # Streamlit application layout | |
| st.title("Financial News Analysis") | |
| st.write("Analyze corresponding Topic and Trend for Financial News!") | |
| st.image("./Fin.jpg", use_column_width = True) | |
| # Text input for user to enter the text | |
| text = st.text_area("Enter the Financial News", "") | |
| # Perform text classification when the user clicks the "Classify" button | |
| if st.button("Analyze"): | |
| # Perform text analysis on the input text | |
| results_1 = analysis(text)[0] | |
| results_2 = classification(text)[0] | |
| # Display the analysis result | |
| #max_score_1 = float('-inf') | |
| #max_label_1 = '' | |
| #for result_1 in results_1: | |
| # if result_1['score'] > max_score_1: | |
| # max_score_1 = result_1['score'] | |
| # max_label_1 = result_1['label'] | |
| # Display the classification result | |
| #max_score_2 = float('-inf') | |
| #max_label_2 = '' | |
| #for result_2 in results_2: | |
| # if result_2['score'] > max_score_2: | |
| # max_score_2 = result_2['score'] | |
| # max_label_2 = result_2['label'] | |
| st.write("Financial Text:", text) | |
| st.write("Trend:", results_1["label"]) | |
| st.write("Trend_Score:", results_1["score"]) | |
| st.write("Finance Topic:", results_2["label"]) | |
| st.write("Topic_Score:", results_2["score"]) |