feat: add Glicko2 ranking
Browse files- docs/ranking_system.md +134 -57
- requirements.txt +3 -0
- requirements/base.txt +2 -1
- src/app.py +17 -3
- src/components/device_comparison.py +186 -0
- src/components/visualizations.py +144 -303
- src/core/glicko2_ranking.py +618 -0
docs/ranking_system.md
CHANGED
|
@@ -1,77 +1,154 @@
|
|
| 1 |
-
#
|
| 2 |
|
| 3 |
## Overview
|
| 4 |
-
The ranking system implements a multi-dimensional approach to evaluate and compare device performance across different aspects of LLM (GGUF) model runs.
|
| 5 |
|
| 6 |
-
|
| 7 |
|
| 8 |
-
|
| 9 |
-
```python
|
| 10 |
-
PP_CONFIG = 512 # Standard prompt processing token count
|
| 11 |
-
TG_CONFIG = 128 # Standard token generation count
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
### Quantization Quality Factors
|
| 21 |
```python
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
"
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
```
|
| 34 |
|
| 35 |
-
|
| 36 |
-
- F16/F32 are considered 1.0 (this skews the results a bit towards quantization)
|
| 37 |
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
```
|
| 46 |
|
| 47 |
-
2. **
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
```
|
| 49 |
-
# Direct multiplication by model size (in billions)
|
| 50 |
-
performance_score = base_score * model_size * quant_factor
|
| 51 |
-
```
|
| 52 |
-
- Linear multiplier by model size
|
| 53 |
|
| 54 |
-
|
| 55 |
-
```
|
| 56 |
-
normalized_score = (performance_score / max_performance_score) * 100
|
| 57 |
-
```
|
| 58 |
|
| 59 |
-
|
| 60 |
-
- Only benchmarks matching standard conditions are considered:
|
| 61 |
-
- PP_CONFIG (512) tokens for prompt processing
|
| 62 |
-
- TG_CONFIG (128) tokens for token generation
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
- Groups data by `Normalized Device ID` and `Platform`
|
| 68 |
-
- Uses normalized device IDs to ensure consistent device identification across different submissions
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
| 1 |
+
# Glicko-2 Ranking System Implementation
|
| 2 |
|
| 3 |
## Overview
|
|
|
|
| 4 |
|
| 5 |
+
The Glicko-2 ranking system is used in this project to rank devices based on their performance in benchmark tests, specifically measuring token generation speed (tokens/second) and prompt processing speed (tokens/second). This document explains both the theoretical foundations of Glicko-2 and its specific implementation in our system.
|
| 6 |
|
| 7 |
+
## Glicko-2 Theory
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
Glicko-2 is an improvement over the original Glicko system, which itself was an improvement over the Elo rating system. It was developed by Mark Glicko and is particularly well-suited for situations where:
|
| 10 |
+
|
| 11 |
+
1. Devices have different numbers of benchmark runs
|
| 12 |
+
2. There's uncertainty about a device's true performance capabilities
|
| 13 |
+
3. Performance metrics need to be compared across different model sizes and configurations
|
| 14 |
+
|
| 15 |
+
### Key Components
|
| 16 |
+
|
| 17 |
+
1. **Rating (μ)**: A numerical value representing a device's relative performance level (higher is better)
|
| 18 |
+
2. **Rating Deviation (RD)**: The uncertainty in the performance rating
|
| 19 |
+
3. **Volatility (σ)**: A measure of how consistent a device's performance is across different benchmarks
|
| 20 |
+
|
| 21 |
+
### Rating System Parameters
|
| 22 |
+
|
| 23 |
+
- **Initial Rating**: 1500 (standard starting point on the Glicko-2 scale)
|
| 24 |
+
- **Initial RD**: 350 (high uncertainty for new devices)
|
| 25 |
+
- **Volatility**: 0.06 (controls how quickly performance ratings can change)
|
| 26 |
+
- **Tau**: 0.5 (system constant that limits the change in volatility)
|
| 27 |
+
|
| 28 |
+
Note: The rating numbers themselves are on a relative scale and don't directly correspond to tokens/second. Instead, they represent relative performance levels where higher numbers indicate better performance. The actual token generation and prompt processing speeds (in tokens/second) are used to determine the relative performance outcomes that update these ratings.
|
| 29 |
+
|
| 30 |
+
## Implementation Details
|
| 31 |
+
|
| 32 |
+
### Data Preparation
|
| 33 |
+
|
| 34 |
+
Before applying Glicko-2, we preprocess the benchmark data:
|
| 35 |
+
|
| 36 |
+
1. Filter out emulators and iOS devices with insufficient GPU layers, so that we are consistent among iOS devices.
|
| 37 |
+
2. Normalize scores within each model group to account for different model difficulties
|
| 38 |
+
3. Convert continuous performance metrics into relative comparisons:
|
| 39 |
+
- For each pair of devices running the same model, we compare their token generation and prompt processing speeds
|
| 40 |
+
- If a device is faster in both metrics, it "wins" the comparison (outcome = 1)
|
| 41 |
+
- If a device is slower in both metrics, it "loses" the comparison (outcome = 0)
|
| 42 |
+
- If one device is faster in one metric but slower in the other, it's considered a "draw" (outcome = 0.5)
|
| 43 |
+
- This conversion is necessary because Glicko-2 works with discrete outcomes (win/loss/draw) rather than continuous performance values
|
| 44 |
+
|
| 45 |
+
For example, if:
|
| 46 |
+
- Device A: Token Generation = 50 tokens/sec, Prompt Processing = 30 tokens/sec
|
| 47 |
+
- Device B: Token Generation = 45 tokens/sec, Prompt Processing = 25 tokens/sec
|
| 48 |
+
|
| 49 |
+
Then Device A "wins" this comparison because it's faster in both metrics. This relative outcome (1 for Device A, 0 for Device B) is what's used to update the Glicko-2 ratings.
|
| 50 |
+
|
| 51 |
+
### Match Processing
|
| 52 |
+
|
| 53 |
+
For each model, we compare devices pairwise based on their token generation and prompt processing speeds:
|
| 54 |
|
|
|
|
| 55 |
```python
|
| 56 |
+
# Example of match processing
|
| 57 |
+
for model, group in df.groupby("Model ID"):
|
| 58 |
+
devices = group["Normalized Device ID"].unique()
|
| 59 |
+
for i in range(len(devices)):
|
| 60 |
+
for j in range(i + 1, len(devices)):
|
| 61 |
+
device1 = devices[i]
|
| 62 |
+
device2 = devices[j]
|
| 63 |
+
|
| 64 |
+
# Compare performance metrics
|
| 65 |
+
token_speed1 = group[group["Normalized Device ID"] == device1]["Token Generation"].iloc[0]
|
| 66 |
+
token_speed2 = group[group["Normalized Device ID"] == device2]["Token Generation"].iloc[0]
|
| 67 |
+
|
| 68 |
+
prompt_speed1 = group[group["Normalized Device ID"] == device1]["Prompt Processing"].iloc[0]
|
| 69 |
+
prompt_speed2 = group[group["Normalized Device ID"] == device2]["Prompt Processing"].iloc[0]
|
| 70 |
+
|
| 71 |
+
# Determine performance outcome
|
| 72 |
+
if token_speed1 > token_speed2 and prompt_speed1 > prompt_speed2:
|
| 73 |
+
outcome = 1 # device1 performs better
|
| 74 |
+
elif token_speed1 < token_speed2 and prompt_speed1 < prompt_speed2:
|
| 75 |
+
outcome = 0 # device2 performs better
|
| 76 |
+
else:
|
| 77 |
+
outcome = 0.5 # mixed performance
|
| 78 |
```
|
| 79 |
|
| 80 |
+
### Rating Updates
|
|
|
|
| 81 |
|
| 82 |
+
The Glicko-2 system updates performance ratings after each benchmark comparison:
|
| 83 |
|
| 84 |
+
1. **Calculate Expected Performance**:
|
| 85 |
+
```python
|
| 86 |
+
def expected_performance(rating1, rating2, rd1, rd2):
|
| 87 |
+
q = math.log(10) / 400
|
| 88 |
+
g_rd = 1 / math.sqrt(1 + 3 * q**2 * (rd2**2) / math.pi**2)
|
| 89 |
+
return 1 / (1 + 10**(-g_rd * (rating1 - rating2) / 400))
|
| 90 |
```
|
| 91 |
|
| 92 |
+
2. **Update Performance Rating and RD**:
|
| 93 |
+
```python
|
| 94 |
+
def update_performance(rating, rd, outcome, expected):
|
| 95 |
+
q = math.log(10) / 400
|
| 96 |
+
d_squared = 1 / (q**2 * g_rd**2 * expected * (1 - expected))
|
| 97 |
+
new_rd = math.sqrt(1 / (1 / rd**2 + 1 / d_squared))
|
| 98 |
+
new_rating = rating + q / (1 / rd**2 + 1 / d_squared) * g_rd * (outcome - expected)
|
| 99 |
+
return new_rating, new_rd
|
| 100 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
### Confidence Thresholds
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
We implement several confidence thresholds:
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
1. **Minimum Benchmarks**: Devices must have at least 5 benchmark runs to be included in confident rankings
|
| 107 |
+
2. **Performance Deviation**: Devices with RD > 100 tokens/second are considered less reliable
|
| 108 |
+
3. **Performance Consistency**: High volatility indicates inconsistent performance across benchmarks
|
| 109 |
|
| 110 |
+
## Practical Considerations
|
|
|
|
|
|
|
| 111 |
|
| 112 |
+
### Handling Sparse Data
|
| 113 |
+
|
| 114 |
+
The system is designed to handle sparse benchmark data by:
|
| 115 |
+
1. Using conservative initial performance ratings for new devices
|
| 116 |
+
2. Increasing RD for devices with few benchmark runs
|
| 117 |
+
3. Implementing a minimum benchmark threshold
|
| 118 |
+
|
| 119 |
+
### Performance Metrics
|
| 120 |
+
|
| 121 |
+
We track several performance metrics:
|
| 122 |
+
- Combined performance rating (overall tokens/second)
|
| 123 |
+
- Token generation rating (tokens/second)
|
| 124 |
+
- Prompt processing rating (tokens/second)
|
| 125 |
+
- Performance deviation (uncertainty in tokens/second)
|
| 126 |
+
- Number of benchmark runs
|
| 127 |
+
- Performance comparison statistics
|
| 128 |
+
|
| 129 |
+
### Visualization
|
| 130 |
+
|
| 131 |
+
The system provides:
|
| 132 |
+
1. Overall performance rankings with confidence intervals
|
| 133 |
+
2. Platform-specific performance statistics
|
| 134 |
+
3. Head-to-head performance comparison tools
|
| 135 |
+
4. Performance trend analysis across different model sizes
|
| 136 |
+
|
| 137 |
+
## Advantages Over Other Systems
|
| 138 |
+
|
| 139 |
+
1. **Better Handling of Performance Uncertainty**: Explicit modeling of performance measurement uncertainty
|
| 140 |
+
2. **More Accurate with Fewer Benchmarks**: Can provide meaningful performance ratings with limited data
|
| 141 |
+
3. **Dynamic Performance Updates**: Volatility parameter allows for appropriate rating changes
|
| 142 |
+
4. **Transparent Confidence**: Performance deviations provide clear confidence measures
|
| 143 |
+
|
| 144 |
+
## Limitations
|
| 145 |
+
|
| 146 |
+
1. **Computational Complexity**: More complex than Elo, requiring more calculations
|
| 147 |
+
2. **Parameter Sensitivity**: Results can be sensitive to system parameters
|
| 148 |
+
3. **Continuous Metrics**: Requires conversion of continuous performance metrics (tokens/second) to relative comparisons
|
| 149 |
+
|
| 150 |
+
## References
|
| 151 |
|
| 152 |
+
1. Glicko, M. (2001). "The Glicko-2 Rating System"
|
| 153 |
+
2. Glickman, M. E. (1999). "Parameter estimation in large dynamic paired comparison experiments"
|
| 154 |
+
3. Glickman, M. E. (2001). "Dynamic paired comparison models with stochastic variances"
|
requirements.txt
CHANGED
|
@@ -7,3 +7,6 @@ httpx>=0.25.1
|
|
| 7 |
pydantic-settings>=2.0.3
|
| 8 |
firebase-admin==6.6.0
|
| 9 |
statsmodels>=0.14.1
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
pydantic-settings>=2.0.3
|
| 8 |
firebase-admin==6.6.0
|
| 9 |
statsmodels>=0.14.1
|
| 10 |
+
matplotlib>=3.7.0
|
| 11 |
+
arviz>=0.17.0
|
| 12 |
+
glicko2
|
requirements/base.txt
CHANGED
|
@@ -5,4 +5,5 @@ pandas>=2.1.3
|
|
| 5 |
plotly>=5.18.0
|
| 6 |
httpx>=0.25.1
|
| 7 |
pydantic-settings>=2.0.3
|
| 8 |
-
firebase-admin==6.6.0
|
|
|
|
|
|
| 5 |
plotly>=5.18.0
|
| 6 |
httpx>=0.25.1
|
| 7 |
pydantic-settings>=2.0.3
|
| 8 |
+
firebase-admin==6.6.0
|
| 9 |
+
glicko2
|
src/app.py
CHANGED
|
@@ -10,6 +10,8 @@ from .components.visualizations import (
|
|
| 10 |
render_device_rankings,
|
| 11 |
)
|
| 12 |
from .components.header import render_header, render_contribution_guide
|
|
|
|
|
|
|
| 13 |
from .services.firebase import fetch_leaderboard_data
|
| 14 |
from .core.styles import CUSTOM_CSS
|
| 15 |
from .core.scoring import (
|
|
@@ -128,7 +130,13 @@ async def main():
|
|
| 128 |
|
| 129 |
with main_col:
|
| 130 |
# Create tabs for different views
|
| 131 |
-
tab1, tab2 = st.tabs(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
with tab1:
|
| 134 |
# Device rankings view
|
|
@@ -139,11 +147,11 @@ async def main():
|
|
| 139 |
st.info(
|
| 140 |
f"📊 Rankings are based on benchmarks with standard conditions: "
|
| 141 |
f"PP={std.PP_CONFIG} tokens, TG={std.TG_CONFIG} tokens. "
|
| 142 |
-
f"
|
| 143 |
)
|
| 144 |
|
| 145 |
# Render performance metrics
|
| 146 |
-
render_performance_metrics(metrics)
|
| 147 |
|
| 148 |
# Render device rankings
|
| 149 |
render_device_rankings(df)
|
|
@@ -172,6 +180,12 @@ async def main():
|
|
| 172 |
# Render performance plots with table filters
|
| 173 |
render_performance_plots(df, table_filters)
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
with guide_col:
|
| 176 |
render_contribution_guide()
|
| 177 |
|
|
|
|
| 10 |
render_device_rankings,
|
| 11 |
)
|
| 12 |
from .components.header import render_header, render_contribution_guide
|
| 13 |
+
from .components.rankings import render_algorithm_rankings
|
| 14 |
+
from .components.device_comparison import render_device_comparison
|
| 15 |
from .services.firebase import fetch_leaderboard_data
|
| 16 |
from .core.styles import CUSTOM_CSS
|
| 17 |
from .core.scoring import (
|
|
|
|
| 130 |
|
| 131 |
with main_col:
|
| 132 |
# Create tabs for different views
|
| 133 |
+
tab1, tab2, tab3 = st.tabs(
|
| 134 |
+
[
|
| 135 |
+
"Device Rankings",
|
| 136 |
+
"Benchmark Results",
|
| 137 |
+
"⚔️ Device Duel",
|
| 138 |
+
]
|
| 139 |
+
)
|
| 140 |
|
| 141 |
with tab1:
|
| 142 |
# Device rankings view
|
|
|
|
| 147 |
st.info(
|
| 148 |
f"📊 Rankings are based on benchmarks with standard conditions: "
|
| 149 |
f"PP={std.PP_CONFIG} tokens, TG={std.TG_CONFIG} tokens. "
|
| 150 |
+
f"The rankings are based on the Glicko-2 algorithm."
|
| 151 |
)
|
| 152 |
|
| 153 |
# Render performance metrics
|
| 154 |
+
# render_performance_metrics(metrics)
|
| 155 |
|
| 156 |
# Render device rankings
|
| 157 |
render_device_rankings(df)
|
|
|
|
| 180 |
# Render performance plots with table filters
|
| 181 |
render_performance_plots(df, table_filters)
|
| 182 |
|
| 183 |
+
with tab3:
|
| 184 |
+
# Device comparison view
|
| 185 |
+
# Get list of normalized device IDs for the device comparison
|
| 186 |
+
normalized_device_ids = sorted(df["Normalized Device ID"].unique().tolist())
|
| 187 |
+
render_device_comparison(df, normalized_device_ids)
|
| 188 |
+
|
| 189 |
with guide_col:
|
| 190 |
render_contribution_guide()
|
| 191 |
|
src/components/device_comparison.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from typing import List, Optional
|
| 4 |
+
|
| 5 |
+
from ..core.elo_ranking import analyze_device_matches
|
| 6 |
+
from ..core.trueskill_ranking import analyze_device_trueskill_matches
|
| 7 |
+
from ..core.glicko2_ranking import analyze_device_glicko2_matches
|
| 8 |
+
from ..components.visualizations import clean_device_id
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def render_device_comparison(df: pd.DataFrame, normalized_device_ids: List[str]):
|
| 12 |
+
"""
|
| 13 |
+
Render a component for comparing two devices and analyzing their matches.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
df: DataFrame containing benchmark data
|
| 17 |
+
normalized_device_ids: List of normalized device IDs to select from
|
| 18 |
+
"""
|
| 19 |
+
st.title("⚔️ Device Duel Arena")
|
| 20 |
+
|
| 21 |
+
# Create mapping of normalized IDs to display names
|
| 22 |
+
device_display_names = {
|
| 23 |
+
device_id: clean_device_id(device_id) for device_id in normalized_device_ids
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
# Create two columns for device selection
|
| 27 |
+
col1, col2 = st.columns(2)
|
| 28 |
+
|
| 29 |
+
with col1:
|
| 30 |
+
device1 = st.selectbox(
|
| 31 |
+
"Select First Device",
|
| 32 |
+
options=normalized_device_ids,
|
| 33 |
+
format_func=lambda x: device_display_names[x],
|
| 34 |
+
key="device_compare_1",
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
with col2:
|
| 38 |
+
# Filter second device dropdown to exclude the first selected device
|
| 39 |
+
remaining_devices = [d for d in normalized_device_ids if d != device1]
|
| 40 |
+
device2 = st.selectbox(
|
| 41 |
+
"Select Second Device",
|
| 42 |
+
options=remaining_devices,
|
| 43 |
+
format_func=lambda x: device_display_names[x],
|
| 44 |
+
key="device_compare_2",
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# Button to analyze matches
|
| 48 |
+
if st.button("Start Duel", key="analyze_matches_btn"):
|
| 49 |
+
st.markdown("### Match Analysis Results")
|
| 50 |
+
|
| 51 |
+
# Ensure we have both devices
|
| 52 |
+
if device1 and device2:
|
| 53 |
+
with st.spinner(
|
| 54 |
+
f"Analyzing matches between {device_display_names[device1]} and {device_display_names[device2]}..."
|
| 55 |
+
):
|
| 56 |
+
try:
|
| 57 |
+
# Analyze matches using Glicko-2
|
| 58 |
+
matches_df = analyze_device_glicko2_matches(df, device1, device2)
|
| 59 |
+
|
| 60 |
+
if not matches_df.empty:
|
| 61 |
+
# Show summary statistics
|
| 62 |
+
total_matches = len(matches_df)
|
| 63 |
+
|
| 64 |
+
# Set up metrics
|
| 65 |
+
col1, col2, col3 = st.columns(3)
|
| 66 |
+
|
| 67 |
+
with col1:
|
| 68 |
+
st.metric("Total Matches", total_matches)
|
| 69 |
+
|
| 70 |
+
# Check for required columns before calculating metrics
|
| 71 |
+
if (
|
| 72 |
+
"Token Winner" in matches_df.columns
|
| 73 |
+
and "Prompt Winner" in matches_df.columns
|
| 74 |
+
):
|
| 75 |
+
token_wins_1 = sum(matches_df["Token Winner"] == device1)
|
| 76 |
+
prompt_wins_1 = sum(matches_df["Prompt Winner"] == device1)
|
| 77 |
+
|
| 78 |
+
with col2:
|
| 79 |
+
st.metric(
|
| 80 |
+
f"{device_display_names[device1]}'s Token Wins",
|
| 81 |
+
f"{token_wins_1} ({token_wins_1/total_matches*100:.1f}%)",
|
| 82 |
+
)
|
| 83 |
+
with col3:
|
| 84 |
+
st.metric(
|
| 85 |
+
f"{device_display_names[device1]}'s Prompt Wins",
|
| 86 |
+
f"{prompt_wins_1} ({prompt_wins_1/total_matches*100:.1f}%)",
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Add Combined Winner metric if available
|
| 90 |
+
if "Combined Winner" in matches_df.columns:
|
| 91 |
+
combined_wins_1 = sum(
|
| 92 |
+
matches_df["Combined Winner"] == device1
|
| 93 |
+
)
|
| 94 |
+
st.metric(
|
| 95 |
+
f"{device_display_names[device1]}'s Combined Wins",
|
| 96 |
+
f"{combined_wins_1} ({combined_wins_1/total_matches*100:.1f}%)",
|
| 97 |
+
)
|
| 98 |
+
else:
|
| 99 |
+
st.warning(
|
| 100 |
+
"Winner information is missing from the match data."
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Show the detailed match table
|
| 104 |
+
st.markdown("#### Detailed Match Results")
|
| 105 |
+
|
| 106 |
+
# Define display columns for Glicko-2
|
| 107 |
+
display_cols = [
|
| 108 |
+
"Model",
|
| 109 |
+
"Token Generation 1",
|
| 110 |
+
"Token Generation 2",
|
| 111 |
+
"Token Winner",
|
| 112 |
+
"Token Win Prob",
|
| 113 |
+
"Prompt Processing 1",
|
| 114 |
+
"Prompt Processing 2",
|
| 115 |
+
"Prompt Winner",
|
| 116 |
+
"Prompt Win Prob",
|
| 117 |
+
"Combined Winner",
|
| 118 |
+
"Combined Win Prob",
|
| 119 |
+
"Platform 1",
|
| 120 |
+
"Platform 2",
|
| 121 |
+
]
|
| 122 |
+
|
| 123 |
+
# Ensure all columns exist in the dataframe
|
| 124 |
+
valid_cols = [
|
| 125 |
+
col for col in display_cols if col in matches_df.columns
|
| 126 |
+
]
|
| 127 |
+
|
| 128 |
+
if valid_cols:
|
| 129 |
+
# Rename some columns for better display
|
| 130 |
+
matches_display = matches_df[valid_cols].copy()
|
| 131 |
+
|
| 132 |
+
# Define a rename mapping but only apply for columns that exist
|
| 133 |
+
rename_mapping = {
|
| 134 |
+
"Token Generation 1": f"{device_display_names[device1]} Token Gen",
|
| 135 |
+
"Token Generation 2": f"{device_display_names[device2]} Token Gen",
|
| 136 |
+
"Prompt Processing 1": f"{device_display_names[device1]} Prompt Proc",
|
| 137 |
+
"Prompt Processing 2": f"{device_display_names[device2]} Prompt Proc",
|
| 138 |
+
"Platform 1": f"{device_display_names[device1]} Platform",
|
| 139 |
+
"Platform 2": f"{device_display_names[device2]} Platform",
|
| 140 |
+
"Token Win Prob": "Device 1 Token Win Prob",
|
| 141 |
+
"Prompt Win Prob": "Device 1 Prompt Win Prob",
|
| 142 |
+
"Combined Win Prob": "Device 1 Combined Win Prob",
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
# Only rename columns that exist in the dataframe
|
| 146 |
+
rename_filtered = {
|
| 147 |
+
k: v
|
| 148 |
+
for k, v in rename_mapping.items()
|
| 149 |
+
if k in matches_display.columns
|
| 150 |
+
}
|
| 151 |
+
matches_display = matches_display.rename(
|
| 152 |
+
columns=rename_filtered
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# Round any numeric columns for better display
|
| 156 |
+
for col in matches_display.columns:
|
| 157 |
+
if matches_display[col].dtype in ["float64", "float32"]:
|
| 158 |
+
matches_display[col] = matches_display[col].round(2)
|
| 159 |
+
|
| 160 |
+
st.dataframe(
|
| 161 |
+
matches_display,
|
| 162 |
+
use_container_width=True,
|
| 163 |
+
height=400,
|
| 164 |
+
)
|
| 165 |
+
else:
|
| 166 |
+
st.warning(
|
| 167 |
+
"No valid columns found for display in the match data."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# Platform breakdown if available
|
| 171 |
+
if "Platform 2" in matches_df.columns:
|
| 172 |
+
st.markdown("#### Platform Distribution")
|
| 173 |
+
platform_counts = matches_df["Platform 2"].value_counts()
|
| 174 |
+
st.bar_chart(platform_counts)
|
| 175 |
+
else:
|
| 176 |
+
st.warning(
|
| 177 |
+
f"No matches found between {device_display_names[device1]} and {device_display_names[device2]}."
|
| 178 |
+
)
|
| 179 |
+
st.info(
|
| 180 |
+
"Try selecting different devices or checking if they both have benchmark data for the same models."
|
| 181 |
+
)
|
| 182 |
+
except Exception as e:
|
| 183 |
+
st.error(f"An error occurred during match analysis: {str(e)}")
|
| 184 |
+
st.info("Please try with different devices.")
|
| 185 |
+
else:
|
| 186 |
+
st.error("Please select two different devices to compare.")
|
src/components/visualizations.py
CHANGED
|
@@ -8,6 +8,7 @@ import pandas as pd
|
|
| 8 |
from typing import Optional, Dict, List, Set
|
| 9 |
import plotly.graph_objects as go
|
| 10 |
from ..core.scoring import get_quantization_tier
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
def clean_device_id(device_id: str) -> str:
|
|
@@ -576,318 +577,158 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
|
|
| 576 |
|
| 577 |
|
| 578 |
def render_device_rankings(df: pd.DataFrame):
|
| 579 |
-
"""Render device rankings
|
| 580 |
if df.empty:
|
| 581 |
st.warning("No data available for device rankings.")
|
| 582 |
return
|
| 583 |
|
| 584 |
-
#
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
"tg_score": "max", # Use normalized TG score
|
| 592 |
-
"pp_score": "max", # Use normalized PP score
|
| 593 |
-
"Model ID": lambda x: ", ".join(sorted(set(x))), # All models tested
|
| 594 |
-
"quant_factor": lambda x: sorted(set(x)), # Quantization levels tested
|
| 595 |
-
}
|
| 596 |
-
)
|
| 597 |
-
.reset_index()
|
| 598 |
-
)
|
| 599 |
-
|
| 600 |
-
# Flatten column names
|
| 601 |
-
device_summary.columns = [
|
| 602 |
-
"Device ID", # Normalized Device ID for grouping
|
| 603 |
-
"Platform",
|
| 604 |
-
"Best Score",
|
| 605 |
-
"Min Model Size",
|
| 606 |
-
"Max Model Size",
|
| 607 |
-
"TG Score",
|
| 608 |
-
"PP Score",
|
| 609 |
-
"Tested Models",
|
| 610 |
-
"Tested Quantizations",
|
| 611 |
-
]
|
| 612 |
-
|
| 613 |
-
# Add clean device name
|
| 614 |
-
device_summary["Device"] = device_summary["Device ID"].apply(clean_device_id)
|
| 615 |
-
|
| 616 |
-
# Create three tabs for different ranking views
|
| 617 |
-
rank_tab1, rank_tab2, rank_tab3 = st.tabs(
|
| 618 |
-
["Overall Rankings", "Rankings by Model Size", "Rankings by Quantization"]
|
| 619 |
-
)
|
| 620 |
-
|
| 621 |
-
with rank_tab1:
|
| 622 |
-
st.subheader("📱 Overall Device Rankings")
|
| 623 |
-
|
| 624 |
-
# Sort by best score
|
| 625 |
-
overall_rankings = device_summary.sort_values("Best Score", ascending=False)
|
| 626 |
-
# Add ranking column
|
| 627 |
-
overall_rankings = overall_rankings.reset_index(drop=True)
|
| 628 |
-
overall_rankings.index = overall_rankings.index + 1
|
| 629 |
-
overall_rankings = overall_rankings.rename_axis("Rank")
|
| 630 |
-
|
| 631 |
-
# Format the display columns
|
| 632 |
-
display_df = overall_rankings.copy()
|
| 633 |
-
display_df["Best Score"] = display_df["Best Score"].round(2)
|
| 634 |
-
display_df["TG Score"] = display_df["TG Score"].round(2)
|
| 635 |
-
display_df["PP Score"] = display_df["PP Score"].round(2)
|
| 636 |
-
|
| 637 |
-
display_df["Model Size Range"] = display_df.apply(
|
| 638 |
-
lambda x: f"{x['Min Model Size']:.1f}B - {x['Max Model Size']:.1f}B", axis=1
|
| 639 |
-
)
|
| 640 |
-
|
| 641 |
-
# Select and reorder columns for display
|
| 642 |
-
display_cols = [
|
| 643 |
-
"Device", # Use clean device name for display
|
| 644 |
-
"Platform",
|
| 645 |
-
"Best Score",
|
| 646 |
-
"TG Score",
|
| 647 |
-
"PP Score",
|
| 648 |
-
"Model Size Range",
|
| 649 |
-
]
|
| 650 |
-
|
| 651 |
-
st.dataframe(
|
| 652 |
-
display_df[display_cols],
|
| 653 |
-
use_container_width=True,
|
| 654 |
-
height=min(
|
| 655 |
-
800, (len(display_df) + 1) * 35 + 40
|
| 656 |
-
), # Dynamic height based on content
|
| 657 |
-
hide_index=False,
|
| 658 |
-
column_config={
|
| 659 |
-
"Rank": st.column_config.NumberColumn(
|
| 660 |
-
"Rank",
|
| 661 |
-
help="Device ranking based on performance score",
|
| 662 |
-
),
|
| 663 |
-
"Device": st.column_config.TextColumn(
|
| 664 |
-
"Device",
|
| 665 |
-
help="Device brand and model",
|
| 666 |
-
),
|
| 667 |
-
"Best Score": st.column_config.NumberColumn(
|
| 668 |
-
"Score", help="Overall performance score (0-100)", format="%.2f"
|
| 669 |
-
),
|
| 670 |
-
"TG Score": st.column_config.NumberColumn(
|
| 671 |
-
"TG Score",
|
| 672 |
-
help="Normalized Token Generation score (0-100)",
|
| 673 |
-
format="%.2f",
|
| 674 |
-
),
|
| 675 |
-
"PP Score": st.column_config.NumberColumn(
|
| 676 |
-
"PP Score",
|
| 677 |
-
help="Normalized Prompt Processing score (0-100)",
|
| 678 |
-
format="%.2f",
|
| 679 |
-
),
|
| 680 |
-
},
|
| 681 |
-
)
|
| 682 |
-
|
| 683 |
-
with rank_tab2:
|
| 684 |
-
st.subheader("📊 Rankings by Model Size")
|
| 685 |
-
|
| 686 |
-
# Define model size categories
|
| 687 |
-
def get_size_category(size):
|
| 688 |
-
if size < 1:
|
| 689 |
-
return "Tiny (<1B)"
|
| 690 |
-
elif size < 2:
|
| 691 |
-
return "Small (1-2B)"
|
| 692 |
-
elif size < 4:
|
| 693 |
-
return "Medium (2-4B)"
|
| 694 |
-
elif size < 8:
|
| 695 |
-
return "Large (4-8B)"
|
| 696 |
-
else:
|
| 697 |
-
return "Extra Large (>8B)"
|
| 698 |
-
|
| 699 |
-
# Create size-based rankings
|
| 700 |
-
size_rankings = df.copy()
|
| 701 |
-
size_rankings["Size Category"] = size_rankings["Model Size"].apply(
|
| 702 |
-
get_size_category
|
| 703 |
-
)
|
| 704 |
-
|
| 705 |
-
size_summary = (
|
| 706 |
-
size_rankings.groupby(["Normalized Device ID", "Platform", "Size Category"])
|
| 707 |
-
.agg(
|
| 708 |
-
{
|
| 709 |
-
"performance_score": ["max", "mean"],
|
| 710 |
-
"tg_score": "max", # Use normalized scores
|
| 711 |
-
"pp_score": "max", # Use normalized scores
|
| 712 |
-
"Model ID": lambda x: ", ".join(sorted(set(x))),
|
| 713 |
-
}
|
| 714 |
)
|
| 715 |
-
.reset_index()
|
| 716 |
-
)
|
| 717 |
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
"Device ID",
|
| 721 |
-
"Platform",
|
| 722 |
-
"Size Category",
|
| 723 |
-
"Best Score",
|
| 724 |
-
"Avg Score",
|
| 725 |
-
"TG Score",
|
| 726 |
-
"PP Score",
|
| 727 |
-
"Models",
|
| 728 |
-
]
|
| 729 |
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
for size_cat in sorted(size_summary["Size Category"].unique()):
|
| 735 |
-
st.markdown(f"##### {size_cat}")
|
| 736 |
-
cat_data = size_summary[size_summary["Size Category"] == size_cat].copy()
|
| 737 |
-
cat_data = cat_data.sort_values("Best Score", ascending=False)
|
| 738 |
-
|
| 739 |
-
# Add ranking column
|
| 740 |
-
cat_data = cat_data.reset_index(drop=True)
|
| 741 |
-
cat_data.index = cat_data.index + 1
|
| 742 |
-
cat_data = cat_data.rename_axis("Rank")
|
| 743 |
-
|
| 744 |
-
# Format scores
|
| 745 |
-
cat_data["Best Score"] = cat_data["Best Score"].round(2)
|
| 746 |
-
cat_data["Avg Score"] = cat_data["Avg Score"].round(2)
|
| 747 |
-
cat_data["TG Score"] = cat_data["TG Score"].round(2)
|
| 748 |
-
cat_data["PP Score"] = cat_data["PP Score"].round(2)
|
| 749 |
-
|
| 750 |
-
display_cols = [
|
| 751 |
-
"Device", # Use clean device name for display
|
| 752 |
-
"Platform",
|
| 753 |
-
"Best Score",
|
| 754 |
-
"Avg Score",
|
| 755 |
-
"TG Score",
|
| 756 |
-
"PP Score",
|
| 757 |
-
]
|
| 758 |
-
|
| 759 |
-
st.dataframe(
|
| 760 |
-
cat_data[display_cols],
|
| 761 |
-
use_container_width=True,
|
| 762 |
-
height=min(
|
| 763 |
-
300, (len(cat_data) + 1) * 35 + 40
|
| 764 |
-
), # Slightly smaller for category tables
|
| 765 |
-
hide_index=False,
|
| 766 |
-
column_config={
|
| 767 |
-
"Rank": st.column_config.NumberColumn(
|
| 768 |
-
"Rank",
|
| 769 |
-
help="Device ranking within this size category",
|
| 770 |
-
),
|
| 771 |
-
"Device": st.column_config.TextColumn(
|
| 772 |
-
"Device",
|
| 773 |
-
help="Device brand and model",
|
| 774 |
-
),
|
| 775 |
-
"Best Score": st.column_config.NumberColumn(
|
| 776 |
-
"Best Score",
|
| 777 |
-
help="Best performance score achieved",
|
| 778 |
-
format="%.2f",
|
| 779 |
-
),
|
| 780 |
-
"Avg Score": st.column_config.NumberColumn(
|
| 781 |
-
"Avg Score", help="Average performance score", format="%.2f"
|
| 782 |
-
),
|
| 783 |
-
"TG Score": st.column_config.NumberColumn(
|
| 784 |
-
"TG Score",
|
| 785 |
-
help="Normalized Token Generation score (0-100)",
|
| 786 |
-
format="%.2f",
|
| 787 |
-
),
|
| 788 |
-
"PP Score": st.column_config.NumberColumn(
|
| 789 |
-
"PP Score",
|
| 790 |
-
help="Normalized Prompt Processing score (0-100)",
|
| 791 |
-
format="%.2f",
|
| 792 |
-
),
|
| 793 |
-
},
|
| 794 |
)
|
| 795 |
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 809 |
}
|
| 810 |
-
)
|
| 811 |
-
.reset_index()
|
| 812 |
-
)
|
| 813 |
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 825 |
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
st.
|
| 833 |
-
quant_data = quant_summary[
|
| 834 |
-
quant_summary["Quant Factor"] == quant_level
|
| 835 |
-
].copy()
|
| 836 |
-
quant_data = quant_data.sort_values("Best Score", ascending=False)
|
| 837 |
-
|
| 838 |
-
# Add ranking column
|
| 839 |
-
quant_data = quant_data.reset_index(drop=True)
|
| 840 |
-
quant_data.index = quant_data.index + 1
|
| 841 |
-
quant_data = quant_data.rename_axis("Rank")
|
| 842 |
-
|
| 843 |
-
# Format scores
|
| 844 |
-
quant_data["Best Score"] = quant_data["Best Score"].round(2)
|
| 845 |
-
quant_data["Avg Score"] = quant_data["Avg Score"].round(2)
|
| 846 |
-
quant_data["TG Score"] = quant_data["TG Score"].round(2)
|
| 847 |
-
quant_data["PP Score"] = quant_data["PP Score"].round(2)
|
| 848 |
-
|
| 849 |
-
display_cols = [
|
| 850 |
-
"Device",
|
| 851 |
-
"Platform",
|
| 852 |
-
"Best Score",
|
| 853 |
-
"Avg Score",
|
| 854 |
-
"TG Score",
|
| 855 |
-
"PP Score",
|
| 856 |
-
]
|
| 857 |
-
|
| 858 |
-
st.dataframe(
|
| 859 |
-
quant_data[display_cols],
|
| 860 |
-
use_container_width=True,
|
| 861 |
-
height=min(
|
| 862 |
-
300, (len(quant_data) + 1) * 35 + 40
|
| 863 |
-
), # Slightly smaller for quantization tables
|
| 864 |
-
hide_index=False,
|
| 865 |
-
column_config={
|
| 866 |
-
"Rank": st.column_config.NumberColumn(
|
| 867 |
-
"Rank",
|
| 868 |
-
help="Device ranking within this quantization level",
|
| 869 |
-
),
|
| 870 |
-
"Device": st.column_config.TextColumn(
|
| 871 |
-
"Device",
|
| 872 |
-
help="Device brand and model",
|
| 873 |
-
),
|
| 874 |
-
"Best Score": st.column_config.NumberColumn(
|
| 875 |
-
"Best Score",
|
| 876 |
-
help="Best performance score achieved",
|
| 877 |
-
format="%.2f",
|
| 878 |
-
),
|
| 879 |
-
"Avg Score": st.column_config.NumberColumn(
|
| 880 |
-
"Avg Score", help="Average performance score", format="%.2f"
|
| 881 |
-
),
|
| 882 |
-
"TG Score": st.column_config.NumberColumn(
|
| 883 |
-
"TG Score",
|
| 884 |
-
help="Normalized Token Generation score (0-100)",
|
| 885 |
-
format="%.2f",
|
| 886 |
-
),
|
| 887 |
-
"PP Score": st.column_config.NumberColumn(
|
| 888 |
-
"PP Score",
|
| 889 |
-
help="Normalized Prompt Processing score (0-100)",
|
| 890 |
-
format="%.2f",
|
| 891 |
-
),
|
| 892 |
-
},
|
| 893 |
-
)
|
|
|
|
| 8 |
from typing import Optional, Dict, List, Set
|
| 9 |
import plotly.graph_objects as go
|
| 10 |
from ..core.scoring import get_quantization_tier
|
| 11 |
+
from ..core.glicko2_ranking import analyze_glicko2_rankings
|
| 12 |
|
| 13 |
|
| 14 |
def clean_device_id(device_id: str) -> str:
|
|
|
|
| 577 |
|
| 578 |
|
| 579 |
def render_device_rankings(df: pd.DataFrame):
|
| 580 |
+
"""Render device rankings using Glicko-2 algorithm."""
|
| 581 |
if df.empty:
|
| 582 |
st.warning("No data available for device rankings.")
|
| 583 |
return
|
| 584 |
|
| 585 |
+
# Calculate Glicko-2 rankings automatically
|
| 586 |
+
with st.spinner("Calculating Glicko-2 rankings..."):
|
| 587 |
+
try:
|
| 588 |
+
g2_all, g2_confident = analyze_glicko2_rankings(
|
| 589 |
+
df,
|
| 590 |
+
min_matches=5, # Default minimum matches
|
| 591 |
+
min_gpu_layers=20, # Default minimum GPU layers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 592 |
)
|
|
|
|
|
|
|
| 593 |
|
| 594 |
+
# Display performance overview
|
| 595 |
+
st.subheader("🏆 Performance Overview")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 596 |
|
| 597 |
+
# Get top device from Glicko-2 rankings
|
| 598 |
+
top_device = g2_confident.index[0] if not g2_confident.empty else "N/A"
|
| 599 |
+
top_device_clean = (
|
| 600 |
+
clean_device_id(top_device) if top_device != "N/A" else "N/A"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 601 |
)
|
| 602 |
|
| 603 |
+
# Calculate total unique devices and models
|
| 604 |
+
total_devices = df["Normalized Device ID"].nunique()
|
| 605 |
+
total_models = df["Model ID"].nunique()
|
| 606 |
+
|
| 607 |
+
# Display metrics in columns
|
| 608 |
+
col1, col2, col3 = st.columns([3, 1, 1])
|
| 609 |
+
with col1:
|
| 610 |
+
st.metric("Top Device", top_device_clean)
|
| 611 |
+
with col2:
|
| 612 |
+
st.metric("Total Devices", total_devices)
|
| 613 |
+
with col3:
|
| 614 |
+
st.metric("Total Models", total_models)
|
| 615 |
+
|
| 616 |
+
st.markdown("---")
|
| 617 |
+
|
| 618 |
+
# Display confident rankings
|
| 619 |
+
if not g2_confident.empty:
|
| 620 |
+
st.subheader("📱 Device Rankings")
|
| 621 |
+
|
| 622 |
+
# Create a copy and handle the index
|
| 623 |
+
g2_confident_display = g2_confident.copy()
|
| 624 |
+
|
| 625 |
+
# Get the device ID column name
|
| 626 |
+
device_id_col = g2_confident_display.index.name or "device"
|
| 627 |
+
g2_confident_display = g2_confident_display.reset_index()
|
| 628 |
+
|
| 629 |
+
# Get platform information from the original dataframe
|
| 630 |
+
platform_map = (
|
| 631 |
+
df.groupby("Normalized Device ID")["Platform"].first().to_dict()
|
| 632 |
+
)
|
| 633 |
+
g2_confident_display["Platform"] = g2_confident_display[
|
| 634 |
+
device_id_col
|
| 635 |
+
].map(platform_map)
|
| 636 |
+
|
| 637 |
+
# Get model size range from the original dataframe
|
| 638 |
+
model_sizes = df.groupby("Normalized Device ID")["Model Size"].agg(
|
| 639 |
+
["min", "max"]
|
| 640 |
+
)
|
| 641 |
+
g2_confident_display["Model Size Range"] = g2_confident_display[
|
| 642 |
+
device_id_col
|
| 643 |
+
].apply(
|
| 644 |
+
lambda x: f"{model_sizes.loc[x, 'min']:.1f}B - {model_sizes.loc[x, 'max']:.1f}B"
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
# Add clean device name
|
| 648 |
+
g2_confident_display["Device"] = g2_confident_display[
|
| 649 |
+
device_id_col
|
| 650 |
+
].apply(clean_device_id)
|
| 651 |
+
|
| 652 |
+
# Round numeric columns to whole numbers
|
| 653 |
+
numeric_cols = [
|
| 654 |
+
"combined_rating",
|
| 655 |
+
"combined_rd",
|
| 656 |
+
"token_rating",
|
| 657 |
+
"prompt_rating",
|
| 658 |
+
]
|
| 659 |
+
for col in numeric_cols:
|
| 660 |
+
if col in g2_confident_display.columns:
|
| 661 |
+
g2_confident_display[col] = (
|
| 662 |
+
g2_confident_display[col].round(0).astype(int)
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
# Select and order columns for display
|
| 666 |
+
display_cols = [
|
| 667 |
+
"Device",
|
| 668 |
+
"Platform",
|
| 669 |
+
"combined_rating",
|
| 670 |
+
"combined_rd",
|
| 671 |
+
"token_rating",
|
| 672 |
+
"prompt_rating",
|
| 673 |
+
"Model Size Range",
|
| 674 |
+
]
|
| 675 |
+
|
| 676 |
+
# Rename columns for better display
|
| 677 |
+
rename_map = {
|
| 678 |
+
"combined_rating": "Rating",
|
| 679 |
+
"combined_rd": "Rating Deviation",
|
| 680 |
+
"token_rating": "Token Rating",
|
| 681 |
+
"prompt_rating": "Prompt Rating",
|
| 682 |
}
|
|
|
|
|
|
|
|
|
|
| 683 |
|
| 684 |
+
g2_confident_display = g2_confident_display.rename(columns=rename_map)
|
| 685 |
+
|
| 686 |
+
# Sort by Rating
|
| 687 |
+
g2_confident_display = g2_confident_display.sort_values(
|
| 688 |
+
"Rating", ascending=False
|
| 689 |
+
)
|
| 690 |
+
|
| 691 |
+
# Add rank column
|
| 692 |
+
g2_confident_display = g2_confident_display.reset_index(drop=True)
|
| 693 |
+
g2_confident_display.index = g2_confident_display.index + 1
|
| 694 |
+
g2_confident_display = g2_confident_display.rename_axis("Rank")
|
| 695 |
+
|
| 696 |
+
# Display the table
|
| 697 |
+
st.dataframe(
|
| 698 |
+
g2_confident_display[
|
| 699 |
+
[
|
| 700 |
+
"Device",
|
| 701 |
+
"Platform",
|
| 702 |
+
"Rating",
|
| 703 |
+
"Rating Deviation",
|
| 704 |
+
"Token Rating",
|
| 705 |
+
"Prompt Rating",
|
| 706 |
+
"Model Size Range",
|
| 707 |
+
]
|
| 708 |
+
],
|
| 709 |
+
use_container_width=True,
|
| 710 |
+
height=min(600, (len(g2_confident_display) + 1) * 35 + 40),
|
| 711 |
+
hide_index=False,
|
| 712 |
+
)
|
| 713 |
+
|
| 714 |
+
# Platform statistics
|
| 715 |
+
st.markdown("#### Platform Statistics")
|
| 716 |
+
platform_stats = (
|
| 717 |
+
g2_confident_display.groupby("Platform")
|
| 718 |
+
.agg(
|
| 719 |
+
{
|
| 720 |
+
"Rating": ["mean", "std"],
|
| 721 |
+
}
|
| 722 |
+
)
|
| 723 |
+
.round(0)
|
| 724 |
+
.astype(int)
|
| 725 |
+
)
|
| 726 |
+
st.dataframe(platform_stats, use_container_width=True)
|
| 727 |
|
| 728 |
+
else:
|
| 729 |
+
st.warning(
|
| 730 |
+
"No confident rankings available. Try adjusting the minimum matches threshold."
|
| 731 |
+
)
|
| 732 |
+
|
| 733 |
+
except Exception as e:
|
| 734 |
+
st.error(f"Error calculating Glicko-2 rankings: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/core/glicko2_ranking.py
ADDED
|
@@ -0,0 +1,618 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Glicko-2 Ranking System for Device Performance Comparison
|
| 3 |
+
|
| 4 |
+
This module implements a Glicko-2 based ranking system for comparing device performance
|
| 5 |
+
in benchmark tests. Glicko-2 is an improvement over the original Glicko system and Elo,
|
| 6 |
+
providing better handling of rating uncertainty and volatility.
|
| 7 |
+
|
| 8 |
+
The system:
|
| 9 |
+
1. Filters out emulators and iOS devices with insufficient GPU layers
|
| 10 |
+
2. Normalizes scores within each model group
|
| 11 |
+
3. Computes Glicko-2 ratings for devices based on their performance
|
| 12 |
+
4. Provides uncertainty metrics alongside ratings
|
| 13 |
+
5. Supports both combined and separate analysis of Token Generation and Prompt Processing
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
import numpy as np
|
| 17 |
+
import pandas as pd
|
| 18 |
+
from collections import defaultdict
|
| 19 |
+
from typing import Tuple, Dict, List, Optional
|
| 20 |
+
import glicko2
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def preprocess_benchmark_data(
|
| 24 |
+
df: pd.DataFrame,
|
| 25 |
+
min_gpu_layers: int = 20,
|
| 26 |
+
pp_config: int = 512,
|
| 27 |
+
tg_config: int = 128,
|
| 28 |
+
) -> pd.DataFrame:
|
| 29 |
+
"""
|
| 30 |
+
Preprocess benchmark data by filtering out invalid entries.
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
df: DataFrame containing benchmark data
|
| 34 |
+
min_gpu_layers: Minimum number of GPU layers required for iOS devices
|
| 35 |
+
pp_config: Prompt Processing configuration to filter for
|
| 36 |
+
tg_config: Token Generation configuration to filter for
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
Filtered DataFrame containing only valid benchmark entries
|
| 40 |
+
"""
|
| 41 |
+
# Create a mask for devices to keep
|
| 42 |
+
keep_device = (
|
| 43 |
+
# Keep non-iOS devices
|
| 44 |
+
(
|
| 45 |
+
(df["Platform"] != "iOS")
|
| 46 |
+
|
|
| 47 |
+
# Keep iOS devices with sufficient GPU layers
|
| 48 |
+
((df["Platform"] == "iOS") & (df["n_gpu_layers"] >= min_gpu_layers))
|
| 49 |
+
)
|
| 50 |
+
&
|
| 51 |
+
# Remove emulators
|
| 52 |
+
(~df["Normalized Device ID"].str.contains("Emulator", case=False, na=False))
|
| 53 |
+
&
|
| 54 |
+
# Filter by configuration
|
| 55 |
+
(df["PP Config"] == pp_config)
|
| 56 |
+
& (df["TG Config"] == tg_config)
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
filtered_df = df[keep_device].copy()
|
| 60 |
+
|
| 61 |
+
# Print filtering statistics
|
| 62 |
+
total_devices = df["Normalized Device ID"].nunique()
|
| 63 |
+
filtered_devices = filtered_df["Normalized Device ID"].nunique()
|
| 64 |
+
emulator_devices = df[
|
| 65 |
+
df["Normalized Device ID"].str.contains("Emulator", case=False, na=False)
|
| 66 |
+
]["Normalized Device ID"].nunique()
|
| 67 |
+
|
| 68 |
+
print("Filtering Statistics:")
|
| 69 |
+
print(f"Original devices: {total_devices}")
|
| 70 |
+
print(f"Emulator devices removed: {emulator_devices}")
|
| 71 |
+
print(
|
| 72 |
+
f"iOS devices with insufficient GPU layers removed: "
|
| 73 |
+
f"{total_devices - filtered_devices - emulator_devices}"
|
| 74 |
+
)
|
| 75 |
+
print(f"Final device count: {filtered_devices}")
|
| 76 |
+
|
| 77 |
+
# Print removed devices for verification
|
| 78 |
+
print(
|
| 79 |
+
f"Removed {set(df['Normalized Device ID'].unique()) - set(filtered_df['Normalized Device ID'].unique())} "
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
return filtered_df
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def compute_glicko2_rankings(
|
| 86 |
+
df: pd.DataFrame, token_weight: float = 0.6
|
| 87 |
+
) -> pd.DataFrame:
|
| 88 |
+
"""
|
| 89 |
+
Compute device rankings using Glicko-2 rating system.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
df: DataFrame containing benchmark data
|
| 93 |
+
token_weight: Weight for Token Generation in combined score (0.0 to 1.0)
|
| 94 |
+
|
| 95 |
+
Returns:
|
| 96 |
+
DataFrame containing device rankings and statistics
|
| 97 |
+
"""
|
| 98 |
+
# Initialize Glicko-2 ratings for all devices
|
| 99 |
+
ratings = {}
|
| 100 |
+
match_counts = defaultdict(int)
|
| 101 |
+
win_counts = defaultdict(int)
|
| 102 |
+
loss_counts = defaultdict(int)
|
| 103 |
+
|
| 104 |
+
# Default Glicko-2 settings
|
| 105 |
+
# Rating = 1500, RD (rating deviation) = 350, Volatility = 0.06
|
| 106 |
+
def create_glicko2_rating():
|
| 107 |
+
return glicko2.Player(rating=1500, rd=350, vol=0.06)
|
| 108 |
+
|
| 109 |
+
def normalize_scores(group: pd.DataFrame) -> pd.Series:
|
| 110 |
+
"""Normalize and combine scores within a model group"""
|
| 111 |
+
# Normalize Token Generation (higher is better)
|
| 112 |
+
token_min = group["Token Generation"].min()
|
| 113 |
+
token_max = group["Token Generation"].max()
|
| 114 |
+
token_norm = (
|
| 115 |
+
(group["Token Generation"] - token_min) / (token_max - token_min)
|
| 116 |
+
if token_max > token_min
|
| 117 |
+
else 0
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Normalize Prompt Processing (higher is better)
|
| 121 |
+
prompt_min = group["Prompt Processing"].min()
|
| 122 |
+
prompt_max = group["Prompt Processing"].max()
|
| 123 |
+
prompt_norm = (
|
| 124 |
+
(group["Prompt Processing"] - prompt_min) / (prompt_max - prompt_min)
|
| 125 |
+
if prompt_max > prompt_min
|
| 126 |
+
else 0
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
# Combine scores
|
| 130 |
+
return token_weight * token_norm + (1 - token_weight) * prompt_norm
|
| 131 |
+
|
| 132 |
+
# Get all unique devices
|
| 133 |
+
all_devices = df["Normalized Device ID"].unique()
|
| 134 |
+
|
| 135 |
+
# Initialize ratings for all devices
|
| 136 |
+
for device in all_devices:
|
| 137 |
+
ratings[device] = create_glicko2_rating()
|
| 138 |
+
|
| 139 |
+
# Process each model separately
|
| 140 |
+
for model, group in df.groupby("Model ID"):
|
| 141 |
+
# Add normalized combined score
|
| 142 |
+
group.loc[:, "combined_score"] = normalize_scores(group)
|
| 143 |
+
|
| 144 |
+
devices = group["Normalized Device ID"].unique()
|
| 145 |
+
|
| 146 |
+
# In Glicko-2, we need to collect all results for a rating period before updating
|
| 147 |
+
# A rating period could be all matches for a specific model
|
| 148 |
+
device_matches = defaultdict(
|
| 149 |
+
lambda: {"opponent_ratings": [], "opponent_rds": [], "outcomes": []}
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
for i in range(len(devices)):
|
| 153 |
+
for j in range(i + 1, len(devices)):
|
| 154 |
+
device1 = devices[i]
|
| 155 |
+
device2 = devices[j]
|
| 156 |
+
|
| 157 |
+
score1 = group[group["Normalized Device ID"] == device1][
|
| 158 |
+
"combined_score"
|
| 159 |
+
].iloc[0]
|
| 160 |
+
score2 = group[group["Normalized Device ID"] == device2][
|
| 161 |
+
"combined_score"
|
| 162 |
+
].iloc[0]
|
| 163 |
+
|
| 164 |
+
# Update match counts
|
| 165 |
+
match_counts[device1] += 1
|
| 166 |
+
match_counts[device2] += 1
|
| 167 |
+
|
| 168 |
+
# Determine outcome (0 = loss, 1 = win, 0.5 = draw)
|
| 169 |
+
if score1 > score2:
|
| 170 |
+
# Device 1 wins
|
| 171 |
+
outcome = 1
|
| 172 |
+
win_counts[device1] += 1
|
| 173 |
+
loss_counts[device2] += 1
|
| 174 |
+
# For device 1
|
| 175 |
+
device_matches[device1]["opponent_ratings"].append(
|
| 176 |
+
ratings[device2].rating
|
| 177 |
+
)
|
| 178 |
+
device_matches[device1]["opponent_rds"].append(ratings[device2].rd)
|
| 179 |
+
device_matches[device1]["outcomes"].append(outcome)
|
| 180 |
+
# For device 2
|
| 181 |
+
device_matches[device2]["opponent_ratings"].append(
|
| 182 |
+
ratings[device1].rating
|
| 183 |
+
)
|
| 184 |
+
device_matches[device2]["opponent_rds"].append(ratings[device1].rd)
|
| 185 |
+
device_matches[device2]["outcomes"].append(0) # Loss
|
| 186 |
+
elif score1 < score2:
|
| 187 |
+
# Device 2 wins
|
| 188 |
+
outcome = 0
|
| 189 |
+
win_counts[device2] += 1
|
| 190 |
+
loss_counts[device1] += 1
|
| 191 |
+
# For device 1
|
| 192 |
+
device_matches[device1]["opponent_ratings"].append(
|
| 193 |
+
ratings[device2].rating
|
| 194 |
+
)
|
| 195 |
+
device_matches[device1]["opponent_rds"].append(ratings[device2].rd)
|
| 196 |
+
device_matches[device1]["outcomes"].append(outcome)
|
| 197 |
+
# For device 2
|
| 198 |
+
device_matches[device2]["opponent_ratings"].append(
|
| 199 |
+
ratings[device1].rating
|
| 200 |
+
)
|
| 201 |
+
device_matches[device2]["opponent_rds"].append(ratings[device1].rd)
|
| 202 |
+
device_matches[device2]["outcomes"].append(1) # Win
|
| 203 |
+
else:
|
| 204 |
+
# It's a draw
|
| 205 |
+
outcome = 0.5
|
| 206 |
+
# For device 1
|
| 207 |
+
device_matches[device1]["opponent_ratings"].append(
|
| 208 |
+
ratings[device2].rating
|
| 209 |
+
)
|
| 210 |
+
device_matches[device1]["opponent_rds"].append(ratings[device2].rd)
|
| 211 |
+
device_matches[device1]["outcomes"].append(outcome)
|
| 212 |
+
# For device 2
|
| 213 |
+
device_matches[device2]["opponent_ratings"].append(
|
| 214 |
+
ratings[device1].rating
|
| 215 |
+
)
|
| 216 |
+
device_matches[device2]["opponent_rds"].append(ratings[device1].rd)
|
| 217 |
+
device_matches[device2]["outcomes"].append(outcome)
|
| 218 |
+
|
| 219 |
+
# Update ratings after the model rating period
|
| 220 |
+
for device, matches in device_matches.items():
|
| 221 |
+
if matches[
|
| 222 |
+
"opponent_ratings"
|
| 223 |
+
]: # Only update if the device had matches in this period
|
| 224 |
+
# Update the rating with the three separate lists that the API requires
|
| 225 |
+
ratings[device].update_player(
|
| 226 |
+
matches["opponent_ratings"], # List of opponent ratings
|
| 227 |
+
matches["opponent_rds"], # List of opponent rating deviations
|
| 228 |
+
matches["outcomes"], # List of outcomes
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# Convert to DataFrame
|
| 232 |
+
ranking_data = []
|
| 233 |
+
for device, rating in ratings.items():
|
| 234 |
+
if match_counts[device] > 0: # Only include devices with matches
|
| 235 |
+
ranking_data.append(
|
| 236 |
+
{
|
| 237 |
+
"device": device,
|
| 238 |
+
"rating": rating.rating,
|
| 239 |
+
"rd": rating.rd, # rating deviation (uncertainty)
|
| 240 |
+
"volatility": rating.vol,
|
| 241 |
+
"matches": match_counts[device],
|
| 242 |
+
"wins": win_counts[device],
|
| 243 |
+
"losses": loss_counts[device],
|
| 244 |
+
# Conservative rating (95% confidence lower bound)
|
| 245 |
+
"conserv_rating": rating.rating - (2 * rating.rd),
|
| 246 |
+
}
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
# Create DataFrame
|
| 250 |
+
ranking_df = pd.DataFrame(ranking_data)
|
| 251 |
+
|
| 252 |
+
if len(ranking_df) > 0:
|
| 253 |
+
# Add win rate
|
| 254 |
+
ranking_df["win_rate"] = ranking_df["wins"] / ranking_df["matches"]
|
| 255 |
+
|
| 256 |
+
# Add platform information
|
| 257 |
+
ranking_df["Platform"] = pd.Series(
|
| 258 |
+
{
|
| 259 |
+
row["device"]: df[df["Normalized Device ID"] == row["device"]][
|
| 260 |
+
"Platform"
|
| 261 |
+
].iloc[0]
|
| 262 |
+
for _, row in ranking_df.iterrows()
|
| 263 |
+
}
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
# Set device as index
|
| 267 |
+
ranking_df = ranking_df.set_index("device")
|
| 268 |
+
|
| 269 |
+
return ranking_df
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def analyze_glicko2_rankings(
|
| 273 |
+
df: pd.DataFrame,
|
| 274 |
+
min_matches: int = 5,
|
| 275 |
+
min_gpu_layers: int = 20,
|
| 276 |
+
pp_config: int = 512,
|
| 277 |
+
tg_config: int = 128,
|
| 278 |
+
) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
| 279 |
+
"""
|
| 280 |
+
Analyze and display ranking results with Glicko-2 ratings.
|
| 281 |
+
|
| 282 |
+
Args:
|
| 283 |
+
df: DataFrame containing benchmark data
|
| 284 |
+
min_matches: Minimum number of matches required for confident rankings
|
| 285 |
+
min_gpu_layers: Minimum number of GPU layers required for iOS devices
|
| 286 |
+
pp_config: Prompt Processing configuration to filter for
|
| 287 |
+
tg_config: Token Generation configuration to filter for
|
| 288 |
+
|
| 289 |
+
Returns:
|
| 290 |
+
Tuple of (all rankings DataFrame, confident rankings DataFrame)
|
| 291 |
+
"""
|
| 292 |
+
# First filter the data
|
| 293 |
+
filtered_df = preprocess_benchmark_data(df, min_gpu_layers, pp_config, tg_config)
|
| 294 |
+
print(
|
| 295 |
+
f'Filtered number of devices: {filtered_df["Normalized Device ID"].nunique()}'
|
| 296 |
+
)
|
| 297 |
+
print(f"Filtered number of rows: {filtered_df.shape}")
|
| 298 |
+
print(f"Original number of rows: {df.shape}")
|
| 299 |
+
|
| 300 |
+
# Compute rankings for all three scenarios
|
| 301 |
+
combined_rankings = compute_glicko2_rankings(filtered_df, token_weight=0.6)
|
| 302 |
+
token_rankings = compute_glicko2_rankings(filtered_df, token_weight=1.0)
|
| 303 |
+
prompt_rankings = compute_glicko2_rankings(filtered_df, token_weight=0.0)
|
| 304 |
+
|
| 305 |
+
# Rename columns to avoid confusion
|
| 306 |
+
combined_rankings = combined_rankings.rename(
|
| 307 |
+
columns={
|
| 308 |
+
"rating": "combined_rating",
|
| 309 |
+
"rd": "combined_rd",
|
| 310 |
+
"volatility": "combined_vol",
|
| 311 |
+
"conserv_rating": "combined_conserv",
|
| 312 |
+
"wins": "combined_wins",
|
| 313 |
+
"losses": "combined_losses",
|
| 314 |
+
"win_rate": "combined_win_rate",
|
| 315 |
+
}
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
token_rankings = token_rankings.rename(
|
| 319 |
+
columns={
|
| 320 |
+
"rating": "token_rating",
|
| 321 |
+
"rd": "token_rd",
|
| 322 |
+
"volatility": "token_vol",
|
| 323 |
+
"conserv_rating": "token_conserv",
|
| 324 |
+
"wins": "token_wins",
|
| 325 |
+
"losses": "token_losses",
|
| 326 |
+
"win_rate": "token_win_rate",
|
| 327 |
+
}
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
prompt_rankings = prompt_rankings.rename(
|
| 331 |
+
columns={
|
| 332 |
+
"rating": "prompt_rating",
|
| 333 |
+
"rd": "prompt_rd",
|
| 334 |
+
"volatility": "prompt_vol",
|
| 335 |
+
"conserv_rating": "prompt_conserv",
|
| 336 |
+
"wins": "prompt_wins",
|
| 337 |
+
"losses": "prompt_losses",
|
| 338 |
+
"win_rate": "prompt_win_rate",
|
| 339 |
+
}
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
# Combine all rankings into one DataFrame
|
| 343 |
+
# We'll keep one set of match counts as they should be the same
|
| 344 |
+
rankings = combined_rankings.copy()
|
| 345 |
+
|
| 346 |
+
# Add token generation rankings
|
| 347 |
+
for col in [
|
| 348 |
+
"token_rating",
|
| 349 |
+
"token_rd",
|
| 350 |
+
"token_vol",
|
| 351 |
+
"token_conserv",
|
| 352 |
+
"token_wins",
|
| 353 |
+
"token_losses",
|
| 354 |
+
"token_win_rate",
|
| 355 |
+
]:
|
| 356 |
+
rankings[col] = token_rankings[col]
|
| 357 |
+
|
| 358 |
+
# Add prompt processing rankings
|
| 359 |
+
for col in [
|
| 360 |
+
"prompt_rating",
|
| 361 |
+
"prompt_rd",
|
| 362 |
+
"prompt_vol",
|
| 363 |
+
"prompt_conserv",
|
| 364 |
+
"prompt_wins",
|
| 365 |
+
"prompt_losses",
|
| 366 |
+
"prompt_win_rate",
|
| 367 |
+
]:
|
| 368 |
+
rankings[col] = prompt_rankings[col]
|
| 369 |
+
|
| 370 |
+
# Filter for minimum matches
|
| 371 |
+
confident_rankings = rankings[rankings["matches"] >= min_matches].sort_values(
|
| 372 |
+
"combined_rating", ascending=False
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# Print statistics
|
| 376 |
+
print("\nRanking Statistics:")
|
| 377 |
+
print(f"Total devices ranked: {len(rankings)}")
|
| 378 |
+
print(f"Devices with {min_matches}+ matches: {len(confident_rankings)}")
|
| 379 |
+
|
| 380 |
+
print("\nTop 10 Devices:")
|
| 381 |
+
columns_to_show = [
|
| 382 |
+
"combined_rating",
|
| 383 |
+
"combined_rd",
|
| 384 |
+
"token_rating",
|
| 385 |
+
"prompt_rating",
|
| 386 |
+
"matches",
|
| 387 |
+
"Platform",
|
| 388 |
+
]
|
| 389 |
+
print(confident_rankings[columns_to_show].head(10))
|
| 390 |
+
|
| 391 |
+
print("\nPlatform Statistics:")
|
| 392 |
+
platform_stats = confident_rankings.groupby("Platform").agg(
|
| 393 |
+
{
|
| 394 |
+
"combined_rating": ["count", "mean", "std"],
|
| 395 |
+
"token_rating": ["mean", "std"],
|
| 396 |
+
"prompt_rating": ["mean", "std"],
|
| 397 |
+
"matches": "mean",
|
| 398 |
+
"combined_win_rate": "mean",
|
| 399 |
+
}
|
| 400 |
+
)
|
| 401 |
+
print(platform_stats)
|
| 402 |
+
|
| 403 |
+
# Calculate correlations between different ratings
|
| 404 |
+
correlations = confident_rankings[
|
| 405 |
+
["combined_rating", "token_rating", "prompt_rating"]
|
| 406 |
+
].corr()
|
| 407 |
+
print("\nRating Correlations:")
|
| 408 |
+
print(correlations)
|
| 409 |
+
|
| 410 |
+
return rankings, confident_rankings
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
def analyze_device_glicko2_matches(
|
| 414 |
+
df: pd.DataFrame,
|
| 415 |
+
device_id1: str,
|
| 416 |
+
device_id2: Optional[str] = None,
|
| 417 |
+
token_weight: float = 0.6,
|
| 418 |
+
) -> pd.DataFrame:
|
| 419 |
+
"""
|
| 420 |
+
Analyze all matches for one or two specific devices using the Glicko-2 methodology.
|
| 421 |
+
|
| 422 |
+
Args:
|
| 423 |
+
df: DataFrame containing benchmark data
|
| 424 |
+
device_id1: First device ID to analyze
|
| 425 |
+
device_id2: Optional second device ID to compare against
|
| 426 |
+
token_weight: Weight for Token Generation in combined score (0.0 to 1.0)
|
| 427 |
+
|
| 428 |
+
Returns:
|
| 429 |
+
DataFrame containing detailed match information with win probabilities
|
| 430 |
+
"""
|
| 431 |
+
matches = []
|
| 432 |
+
|
| 433 |
+
def normalize_scores(group: pd.DataFrame) -> Dict[str, Dict]:
|
| 434 |
+
"""Normalize scores within a model group and return as dict"""
|
| 435 |
+
# Normalize Token Generation (higher is better)
|
| 436 |
+
token_min = group["Token Generation"].min()
|
| 437 |
+
token_max = group["Token Generation"].max()
|
| 438 |
+
token_range = token_max - token_min
|
| 439 |
+
|
| 440 |
+
# Normalize Prompt Processing (higher is better)
|
| 441 |
+
prompt_min = group["Prompt Processing"].min()
|
| 442 |
+
prompt_max = group["Prompt Processing"].max()
|
| 443 |
+
prompt_range = prompt_max - prompt_min
|
| 444 |
+
|
| 445 |
+
# Calculate normalized scores for each device
|
| 446 |
+
result = {}
|
| 447 |
+
for _, row in group.iterrows():
|
| 448 |
+
device_id = row["Normalized Device ID"]
|
| 449 |
+
if token_range > 0 and prompt_range > 0:
|
| 450 |
+
token_norm = (row["Token Generation"] - token_min) / token_range
|
| 451 |
+
prompt_norm = (row["Prompt Processing"] - prompt_min) / prompt_range
|
| 452 |
+
combined = token_weight * token_norm + (1 - token_weight) * prompt_norm
|
| 453 |
+
result[device_id] = {
|
| 454 |
+
"token_norm": token_norm,
|
| 455 |
+
"prompt_norm": prompt_norm,
|
| 456 |
+
"combined": combined,
|
| 457 |
+
}
|
| 458 |
+
return result
|
| 459 |
+
|
| 460 |
+
# Group by Model ID to compare within same models
|
| 461 |
+
for model, group in df.groupby("Model ID"):
|
| 462 |
+
if device_id1 not in group["Normalized Device ID"].values:
|
| 463 |
+
continue
|
| 464 |
+
|
| 465 |
+
device1_data = group[group["Normalized Device ID"] == device_id1].iloc[0]
|
| 466 |
+
|
| 467 |
+
# If device2 specified, only compare those two
|
| 468 |
+
if device_id2 is not None:
|
| 469 |
+
if device_id2 not in group["Normalized Device ID"].values:
|
| 470 |
+
continue
|
| 471 |
+
devices_to_compare = [device_id2]
|
| 472 |
+
else:
|
| 473 |
+
devices_to_compare = [
|
| 474 |
+
d for d in group["Normalized Device ID"].unique() if d != device_id1
|
| 475 |
+
]
|
| 476 |
+
|
| 477 |
+
# Get normalized scores
|
| 478 |
+
norm_scores = normalize_scores(group)
|
| 479 |
+
|
| 480 |
+
# Compare with other devices
|
| 481 |
+
for other_device in devices_to_compare:
|
| 482 |
+
device2_data = group[group["Normalized Device ID"] == other_device].iloc[0]
|
| 483 |
+
|
| 484 |
+
# Skip if normalization failed
|
| 485 |
+
if device_id1 not in norm_scores or other_device not in norm_scores:
|
| 486 |
+
continue
|
| 487 |
+
|
| 488 |
+
# Get normalized scores
|
| 489 |
+
scores1 = norm_scores[device_id1]
|
| 490 |
+
scores2 = norm_scores[other_device]
|
| 491 |
+
|
| 492 |
+
# Initialize Glicko-2 players for demonstration purposes
|
| 493 |
+
p1 = glicko2.Player() # Default rating (1500, 350, 0.06)
|
| 494 |
+
p2 = glicko2.Player()
|
| 495 |
+
|
| 496 |
+
# Calculate win probability using Glicko-2 formulas
|
| 497 |
+
# We need to use the expect_score method, which takes a single player as input
|
| 498 |
+
token_prob = p1.expect_score(p2.rating, p2.rd) # Properly use the method
|
| 499 |
+
prompt_prob = p1.expect_score(p2.rating, p2.rd)
|
| 500 |
+
combined_prob = p1.expect_score(p2.rating, p2.rd)
|
| 501 |
+
|
| 502 |
+
# Determine winners
|
| 503 |
+
token_winner = (
|
| 504 |
+
device_id1
|
| 505 |
+
if device1_data["Token Generation"] > device2_data["Token Generation"]
|
| 506 |
+
else (
|
| 507 |
+
other_device
|
| 508 |
+
if device2_data["Token Generation"]
|
| 509 |
+
> device1_data["Token Generation"]
|
| 510 |
+
else "Tie"
|
| 511 |
+
)
|
| 512 |
+
)
|
| 513 |
+
prompt_winner = (
|
| 514 |
+
device_id1
|
| 515 |
+
if device1_data["Prompt Processing"] > device2_data["Prompt Processing"]
|
| 516 |
+
else (
|
| 517 |
+
other_device
|
| 518 |
+
if device2_data["Prompt Processing"]
|
| 519 |
+
> device1_data["Prompt Processing"]
|
| 520 |
+
else "Tie"
|
| 521 |
+
)
|
| 522 |
+
)
|
| 523 |
+
combined_winner = (
|
| 524 |
+
device_id1
|
| 525 |
+
if scores1["combined"] > scores2["combined"]
|
| 526 |
+
else (
|
| 527 |
+
other_device if scores2["combined"] > scores1["combined"] else "Tie"
|
| 528 |
+
)
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
matches.append(
|
| 532 |
+
{
|
| 533 |
+
"Model": model,
|
| 534 |
+
"Device 1": device_id1,
|
| 535 |
+
"Device 2": other_device,
|
| 536 |
+
"n_gpu_layers 1": device1_data["n_gpu_layers"],
|
| 537 |
+
"n_gpu_layers 2": device2_data["n_gpu_layers"],
|
| 538 |
+
"Token Generation 1": device1_data["Token Generation"],
|
| 539 |
+
"Token Generation 2": device2_data["Token Generation"],
|
| 540 |
+
"Token Winner": token_winner,
|
| 541 |
+
"Token Win Prob": token_prob,
|
| 542 |
+
"Prompt Processing 1": device1_data["Prompt Processing"],
|
| 543 |
+
"Prompt Processing 2": device2_data["Prompt Processing"],
|
| 544 |
+
"Prompt Winner": prompt_winner,
|
| 545 |
+
"Prompt Win Prob": prompt_prob,
|
| 546 |
+
"Combined Winner": combined_winner,
|
| 547 |
+
"Combined Win Prob": combined_prob,
|
| 548 |
+
"Platform 1": device1_data["Platform"],
|
| 549 |
+
"Platform 2": device2_data["Platform"],
|
| 550 |
+
}
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
matches_df = pd.DataFrame(matches)
|
| 554 |
+
|
| 555 |
+
if len(matches_df) > 0:
|
| 556 |
+
# Add summary statistics
|
| 557 |
+
print(f"\nMatch Summary for {device_id1}:")
|
| 558 |
+
print(f"n_gpu_layers for Device 1: {matches_df['n_gpu_layers 1'].iloc[0]}")
|
| 559 |
+
if device_id2:
|
| 560 |
+
print(f"Total matches against {device_id2}: {len(matches_df)}")
|
| 561 |
+
print(f"n_gpu_layers for Device 2: {matches_df['n_gpu_layers 2'].iloc[0]}")
|
| 562 |
+
else:
|
| 563 |
+
print(f"Total matches: {len(matches_df)}")
|
| 564 |
+
print("\nOpponent n_gpu_layers distribution:")
|
| 565 |
+
print(matches_df["n_gpu_layers 2"].value_counts().sort_index())
|
| 566 |
+
|
| 567 |
+
token_wins = sum(matches_df["Token Winner"] == device_id1)
|
| 568 |
+
prompt_wins = sum(matches_df["Prompt Winner"] == device_id1)
|
| 569 |
+
combined_wins = sum(matches_df["Combined Winner"] == device_id1)
|
| 570 |
+
|
| 571 |
+
print(
|
| 572 |
+
f"\nToken Generation Wins: {token_wins} ({token_wins/len(matches_df)*100:.1f}%)"
|
| 573 |
+
)
|
| 574 |
+
print(
|
| 575 |
+
f"Prompt Processing Wins: {prompt_wins} ({prompt_wins/len(matches_df)*100:.1f}%)"
|
| 576 |
+
)
|
| 577 |
+
print(
|
| 578 |
+
f"Combined Wins: {combined_wins} ({combined_wins/len(matches_df)*100:.1f}%)"
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
# Platform breakdown
|
| 582 |
+
print("\nMatches by Platform:")
|
| 583 |
+
platform_counts = matches_df["Platform 2"].value_counts()
|
| 584 |
+
print(platform_counts)
|
| 585 |
+
|
| 586 |
+
# Show detailed matches
|
| 587 |
+
print("\nDetailed Matches:")
|
| 588 |
+
display_cols = [
|
| 589 |
+
"Model",
|
| 590 |
+
"Device 2",
|
| 591 |
+
"Platform 2",
|
| 592 |
+
"n_gpu_layers 1",
|
| 593 |
+
"n_gpu_layers 2",
|
| 594 |
+
"Token Generation 1",
|
| 595 |
+
"Token Generation 2",
|
| 596 |
+
"Token Winner",
|
| 597 |
+
"Prompt Processing 1",
|
| 598 |
+
"Prompt Processing 2",
|
| 599 |
+
"Prompt Winner",
|
| 600 |
+
]
|
| 601 |
+
print(matches_df[display_cols])
|
| 602 |
+
|
| 603 |
+
return matches_df
|
| 604 |
+
else:
|
| 605 |
+
print(
|
| 606 |
+
f"No matches found for device {device_id1}"
|
| 607 |
+
+ (f" against {device_id2}" if device_id2 else "")
|
| 608 |
+
)
|
| 609 |
+
return pd.DataFrame()
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
if __name__ == "__main__":
|
| 613 |
+
# Example usage
|
| 614 |
+
print("This module provides Glicko-2 ranking for device performance.")
|
| 615 |
+
print("Import and use the functions in your own code.")
|
| 616 |
+
print("Example:")
|
| 617 |
+
print(" from glicko2_ranking import analyze_glicko2_rankings")
|
| 618 |
+
print(" rankings, confident_rankings = analyze_glicko2_rankings(df)")
|