update the code based on data format change
Browse files- .gitattributes +1 -0
- main.py +8 -76
- src/app.py +51 -12
- src/components/filters.py +192 -36
- src/components/visualizations.py +236 -53
- src/services/firebase.py +85 -42
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
src/static/images/Bench.gif filter=lfs diff=lfs merge=lfs -text
|
main.py
CHANGED
|
@@ -1,79 +1,11 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
from src.components.filters import render_table_filters, render_plot_filters
|
| 6 |
-
from src.components.visualizations import (
|
| 7 |
-
render_performance_plots,
|
| 8 |
-
render_leaderboard_table,
|
| 9 |
-
)
|
| 10 |
-
from src.services.firebase import fetch_leaderboard_data
|
| 11 |
-
|
| 12 |
-
# Configure the page
|
| 13 |
-
st.set_page_config(
|
| 14 |
-
page_title="AI-Phone Leaderboard",
|
| 15 |
-
page_icon="src/static/images/favicon.png",
|
| 16 |
-
layout="wide",
|
| 17 |
-
initial_sidebar_state="expanded",
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
-
# Apply custom CSS
|
| 21 |
-
st.markdown(CUSTOM_CSS, unsafe_allow_html=True)
|
| 22 |
-
|
| 23 |
-
async def main():
|
| 24 |
-
# Render header
|
| 25 |
-
render_header()
|
| 26 |
-
|
| 27 |
-
# Fetch initial data
|
| 28 |
-
full_df = await fetch_leaderboard_data()
|
| 29 |
-
if full_df.empty:
|
| 30 |
-
st.info("No benchmark data available yet!")
|
| 31 |
-
return
|
| 32 |
-
|
| 33 |
-
# Get unique values for filters
|
| 34 |
-
models = sorted(full_df["Model"].unique())
|
| 35 |
-
benchmarks = sorted(full_df["Benchmark"].unique())
|
| 36 |
-
platforms = sorted(full_df["Platform"].unique())
|
| 37 |
-
devices = sorted(full_df["Normalized Device ID"].unique())
|
| 38 |
-
|
| 39 |
-
# Render table filters and get selections
|
| 40 |
-
(
|
| 41 |
-
selected_model_table,
|
| 42 |
-
selected_benchmark_table,
|
| 43 |
-
selected_platform_table,
|
| 44 |
-
selected_device_table,
|
| 45 |
-
) = render_table_filters(models, benchmarks, platforms, devices)
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
table_df = table_df[table_df["Model"] == selected_model_table]
|
| 51 |
-
if selected_benchmark_table != "All":
|
| 52 |
-
table_df = table_df[table_df["Benchmark"] == selected_benchmark_table]
|
| 53 |
-
if selected_platform_table != "All":
|
| 54 |
-
table_df = table_df[table_df["Platform"] == selected_platform_table]
|
| 55 |
-
if selected_device_table != "All":
|
| 56 |
-
table_df = table_df[table_df["Normalized Device ID"] == selected_device_table]
|
| 57 |
-
|
| 58 |
-
# Render leaderboard table
|
| 59 |
-
render_leaderboard_table(table_df)
|
| 60 |
-
|
| 61 |
-
# Performance plots section
|
| 62 |
-
st.subheader("Performance Comparison")
|
| 63 |
-
|
| 64 |
-
# Render plot filters and get selections
|
| 65 |
-
selected_model_plot, selected_benchmark_plot = render_plot_filters(
|
| 66 |
-
models, benchmarks
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
# Filter data for plots
|
| 70 |
-
plot_df = full_df[
|
| 71 |
-
(full_df["Model"] == selected_model_plot)
|
| 72 |
-
& (full_df["Benchmark"] == selected_benchmark_plot)
|
| 73 |
-
]
|
| 74 |
-
|
| 75 |
-
# Render performance plots
|
| 76 |
-
render_performance_plots(plot_df, selected_model_plot)
|
| 77 |
|
| 78 |
if __name__ == "__main__":
|
| 79 |
-
asyncio.run(main())
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Main module for the frontend application.
|
| 3 |
+
This file serves as a module init file.
|
| 4 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
import asyncio
|
| 7 |
+
import streamlit as st
|
| 8 |
+
from src.app import main
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
if __name__ == "__main__":
|
| 11 |
+
asyncio.run(main())
|
src/app.py
CHANGED
|
@@ -1,15 +1,54 @@
|
|
| 1 |
import asyncio
|
| 2 |
-
|
| 3 |
import pandas as pd
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import asyncio
|
| 2 |
+
import streamlit as st
|
| 3 |
import pandas as pd
|
| 4 |
+
from typing import Optional, List, Set
|
| 5 |
|
| 6 |
+
from .components.filters import render_table_filters, render_plot_filters
|
| 7 |
+
from .components.visualizations import (
|
| 8 |
+
render_leaderboard_table,
|
| 9 |
+
render_performance_plots,
|
| 10 |
+
)
|
| 11 |
+
from .services.firebase import fetch_leaderboard_data
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_unique_values(df: pd.DataFrame) -> tuple[List[str], List[str], List[str]]:
|
| 15 |
+
"""Get unique values for filters"""
|
| 16 |
+
models = sorted(df["Model ID"].unique().tolist())
|
| 17 |
+
platforms = sorted(df["Platform"].unique().tolist())
|
| 18 |
+
devices = sorted(df["Device"].unique().tolist())
|
| 19 |
+
return models, platforms, devices
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
async def main():
|
| 23 |
+
"""Main application entry point"""
|
| 24 |
+
st.set_page_config(
|
| 25 |
+
page_title="AI Phone Benchmark Leaderboard",
|
| 26 |
+
page_icon="📱",
|
| 27 |
+
layout="wide",
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Fetch initial data
|
| 31 |
+
df = await fetch_leaderboard_data()
|
| 32 |
+
|
| 33 |
+
if df.empty:
|
| 34 |
+
st.error("No data available. Please check your connection and try again.")
|
| 35 |
+
return
|
| 36 |
+
|
| 37 |
+
# Get unique values for filters
|
| 38 |
+
models, platforms, devices = get_unique_values(df)
|
| 39 |
+
|
| 40 |
+
# Render table filters in sidebar
|
| 41 |
+
table_filters = render_table_filters(models, platforms, devices)
|
| 42 |
+
|
| 43 |
+
# Render the main leaderboard table
|
| 44 |
+
st.title("📱 AI Phone Benchmark Leaderboard")
|
| 45 |
+
render_leaderboard_table(df, table_filters)
|
| 46 |
+
|
| 47 |
+
# Render plot section
|
| 48 |
+
st.title("📊 Performance Comparison")
|
| 49 |
+
plot_filters = render_plot_filters(models, platforms, devices)
|
| 50 |
+
render_performance_plots(df, plot_filters)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
if __name__ == "__main__":
|
| 54 |
+
asyncio.run(main())
|
src/components/filters.py
CHANGED
|
@@ -1,50 +1,206 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from typing import List, Tuple
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
)
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
"Benchmark", ["All"] + list(benchmarks), key="table_benchmark"
|
| 21 |
)
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
| 25 |
)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
"Device", ["All"] + list(devices), key="table_device"
|
| 29 |
)
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
def render_plot_filters(
|
| 34 |
-
models: List[str],
|
| 35 |
-
|
| 36 |
-
) -> Tuple[str, str]:
|
| 37 |
"""Render and handle plot filters"""
|
| 38 |
plot_filters = st.container()
|
| 39 |
with plot_filters:
|
| 40 |
-
p1, p2 = st.columns(
|
| 41 |
with p1:
|
| 42 |
-
selected_model = st.selectbox(
|
| 43 |
-
"Model for Comparison", models, key="plot_model"
|
| 44 |
-
)
|
| 45 |
with p2:
|
| 46 |
-
|
| 47 |
-
"
|
| 48 |
)
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from typing import List, Tuple, Dict, Set
|
| 3 |
|
| 4 |
+
|
| 5 |
+
def render_grouping_options() -> List[str]:
|
| 6 |
+
"""Render grouping options selector"""
|
| 7 |
+
available_groups = [
|
| 8 |
+
"Model ID",
|
| 9 |
+
"Device",
|
| 10 |
+
"Platform",
|
| 11 |
+
"n_threads",
|
| 12 |
+
"flash_attn",
|
| 13 |
+
"cache_type_k",
|
| 14 |
+
"cache_type_v",
|
| 15 |
+
"PP Value",
|
| 16 |
+
"TG Value",
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
default_groups = ["Model ID", "Device", "Platform"]
|
| 20 |
+
|
| 21 |
+
selected_groups = st.multiselect(
|
| 22 |
+
"Group Results By",
|
| 23 |
+
options=available_groups,
|
| 24 |
+
default=default_groups,
|
| 25 |
+
help="Select columns to group the results by",
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
return selected_groups
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def render_column_visibility() -> Set[str]:
|
| 32 |
+
"""Render column visibility selector"""
|
| 33 |
+
column_categories = {
|
| 34 |
+
"Device Info": [
|
| 35 |
+
"Device",
|
| 36 |
+
"Platform",
|
| 37 |
+
"CPU Cores",
|
| 38 |
+
"Total Memory (GB)",
|
| 39 |
+
"Memory Usage (%)",
|
| 40 |
+
],
|
| 41 |
+
"Benchmark Info": [
|
| 42 |
+
"PP Value",
|
| 43 |
+
"TG Value",
|
| 44 |
+
"Prompt Processing",
|
| 45 |
+
"Token Generation",
|
| 46 |
+
],
|
| 47 |
+
"Model Info": [
|
| 48 |
+
"Model",
|
| 49 |
+
"Model Size",
|
| 50 |
+
"Model ID",
|
| 51 |
+
],
|
| 52 |
+
"Advanced": [
|
| 53 |
+
"n_threads",
|
| 54 |
+
"flash_attn",
|
| 55 |
+
"cache_type_k",
|
| 56 |
+
"cache_type_v",
|
| 57 |
+
],
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
# Default visible columns
|
| 61 |
+
default_columns = {
|
| 62 |
+
"Device",
|
| 63 |
+
"Platform",
|
| 64 |
+
"Model",
|
| 65 |
+
"Model Size",
|
| 66 |
+
"Prompt Processing",
|
| 67 |
+
"Token Generation",
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
with st.expander("Column Visibility", expanded=False):
|
| 71 |
+
selected_columns = set()
|
| 72 |
+
for category, columns in column_categories.items():
|
| 73 |
+
st.subheader(category)
|
| 74 |
+
for col in columns:
|
| 75 |
+
if st.checkbox(col, value=col in default_columns):
|
| 76 |
+
selected_columns.add(col)
|
| 77 |
+
|
| 78 |
+
return selected_columns
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def render_benchmark_filters() -> Dict:
|
| 82 |
+
"""Render advanced benchmark configuration filters"""
|
| 83 |
+
with st.expander("Benchmark Configuration", expanded=False):
|
| 84 |
+
use_custom_config = st.checkbox("Use Custom PP/TG Values", value=False)
|
| 85 |
+
|
| 86 |
+
if use_custom_config:
|
| 87 |
+
col1, col2 = st.columns(2)
|
| 88 |
+
with col1:
|
| 89 |
+
pp_min = st.number_input("Min PP", value=0, step=32)
|
| 90 |
+
pp_max = st.number_input("Max PP", value=1024, step=32)
|
| 91 |
+
with col2:
|
| 92 |
+
tg_min = st.number_input("Min TG", value=0, step=32)
|
| 93 |
+
tg_max = st.number_input("Max TG", value=512, step=32)
|
| 94 |
+
else:
|
| 95 |
+
pp_min = pp_max = tg_min = tg_max = None
|
| 96 |
+
|
| 97 |
+
return {
|
| 98 |
+
"use_custom_config": use_custom_config,
|
| 99 |
+
"pp_range": (pp_min, pp_max),
|
| 100 |
+
"tg_range": (tg_min, tg_max),
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def render_advanced_filters() -> Dict:
|
| 105 |
+
"""Render advanced settings filters"""
|
| 106 |
+
with st.expander("Advanced Settings", expanded=False):
|
| 107 |
+
col1, col2 = st.columns(2)
|
| 108 |
+
|
| 109 |
+
with col1:
|
| 110 |
+
n_threads = st.multiselect(
|
| 111 |
+
"Number of Threads", options=[1, 2, 4, 8, 16], default=None
|
| 112 |
)
|
| 113 |
+
flash_attn = st.multiselect(
|
| 114 |
+
"Flash Attention", options=[True, False], default=None
|
|
|
|
| 115 |
)
|
| 116 |
+
|
| 117 |
+
with col2:
|
| 118 |
+
cache_type = st.multiselect(
|
| 119 |
+
"Cache Type", options=["f16", "f32"], default=None
|
| 120 |
)
|
| 121 |
+
memory_usage = st.slider(
|
| 122 |
+
"Max Memory Usage (%)", min_value=0, max_value=100, value=100
|
|
|
|
| 123 |
)
|
| 124 |
+
|
| 125 |
+
return {
|
| 126 |
+
"n_threads": n_threads,
|
| 127 |
+
"flash_attn": flash_attn,
|
| 128 |
+
"cache_type": cache_type,
|
| 129 |
+
"max_memory_usage": memory_usage,
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
|
| 133 |
def render_plot_filters(
|
| 134 |
+
models: List[str], platforms: List[str], devices: List[str]
|
| 135 |
+
) -> Dict:
|
|
|
|
| 136 |
"""Render and handle plot filters"""
|
| 137 |
plot_filters = st.container()
|
| 138 |
with plot_filters:
|
| 139 |
+
p1, p2, p3 = st.columns(3)
|
| 140 |
with p1:
|
| 141 |
+
selected_model = st.selectbox("Model for Plot", models, key="plot_model")
|
|
|
|
|
|
|
| 142 |
with p2:
|
| 143 |
+
selected_platform = st.selectbox(
|
| 144 |
+
"Platform for Plot", ["All"] + list(platforms), key="plot_platform"
|
| 145 |
)
|
| 146 |
+
with p3:
|
| 147 |
+
selected_device = st.selectbox(
|
| 148 |
+
"Device for Plot", ["All"] + list(devices), key="plot_device"
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
# Use the same benchmark and advanced filters as the table
|
| 152 |
+
benchmark_config = render_benchmark_filters()
|
| 153 |
+
advanced_settings = render_advanced_filters()
|
| 154 |
+
|
| 155 |
+
return {
|
| 156 |
+
"basic_filters": {
|
| 157 |
+
"model": selected_model,
|
| 158 |
+
"platform": selected_platform,
|
| 159 |
+
"device": selected_device,
|
| 160 |
+
},
|
| 161 |
+
"benchmark_config": benchmark_config,
|
| 162 |
+
"advanced_settings": advanced_settings,
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def render_table_filters(
|
| 167 |
+
models: List[str], platforms: List[str], devices: List[str]
|
| 168 |
+
) -> Dict:
|
| 169 |
+
"""Render and handle all table filters"""
|
| 170 |
+
st.sidebar.title("Filters")
|
| 171 |
+
|
| 172 |
+
# Basic filters
|
| 173 |
+
selected_model = st.sidebar.selectbox(
|
| 174 |
+
"Model", ["All"] + list(models), key="table_model"
|
| 175 |
+
)
|
| 176 |
+
selected_platform = st.sidebar.selectbox(
|
| 177 |
+
"Platform", ["All"] + list(platforms), key="table_platform"
|
| 178 |
+
)
|
| 179 |
+
selected_device = st.sidebar.selectbox(
|
| 180 |
+
"Device", ["All"] + list(devices), key="table_device"
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# Grouping options
|
| 184 |
+
st.sidebar.title("Display Options")
|
| 185 |
+
grouping = render_grouping_options()
|
| 186 |
+
|
| 187 |
+
# Column visibility
|
| 188 |
+
visible_columns = render_column_visibility()
|
| 189 |
+
|
| 190 |
+
# Benchmark configuration
|
| 191 |
+
benchmark_config = render_benchmark_filters()
|
| 192 |
+
|
| 193 |
+
# Advanced settings
|
| 194 |
+
advanced_settings = render_advanced_filters()
|
| 195 |
+
|
| 196 |
+
return {
|
| 197 |
+
"basic_filters": {
|
| 198 |
+
"model": selected_model,
|
| 199 |
+
"platform": selected_platform,
|
| 200 |
+
"device": selected_device,
|
| 201 |
+
},
|
| 202 |
+
"grouping": grouping,
|
| 203 |
+
"visible_columns": visible_columns,
|
| 204 |
+
"benchmark_config": benchmark_config,
|
| 205 |
+
"advanced_settings": advanced_settings,
|
| 206 |
+
}
|
src/components/visualizations.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import plotly.express as px
|
| 3 |
import pandas as pd
|
| 4 |
-
from typing import Optional
|
|
|
|
| 5 |
|
| 6 |
def create_performance_plot(df: pd.DataFrame, metric: str, title: str):
|
| 7 |
"""Create a performance comparison plot"""
|
|
@@ -27,93 +28,275 @@ def create_performance_plot(df: pd.DataFrame, metric: str, title: str):
|
|
| 27 |
)
|
| 28 |
return fig
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
"""Render performance comparison plots"""
|
| 32 |
-
if
|
| 33 |
-
st.warning(
|
| 34 |
-
"No data available for the selected model and benchmark combination."
|
| 35 |
-
)
|
| 36 |
return
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
col1, col2 = st.columns(2)
|
| 39 |
with col1:
|
| 40 |
fig1 = create_performance_plot(
|
| 41 |
-
|
| 42 |
"Prompt Processing",
|
| 43 |
-
f"Prompt Processing Time
|
| 44 |
)
|
| 45 |
if fig1:
|
| 46 |
st.plotly_chart(fig1, use_container_width=True)
|
| 47 |
|
| 48 |
with col2:
|
| 49 |
fig2 = create_performance_plot(
|
| 50 |
-
|
| 51 |
"Token Generation",
|
| 52 |
-
f"Token Generation Time
|
| 53 |
)
|
| 54 |
if fig2:
|
| 55 |
st.plotly_chart(fig2, use_container_width=True)
|
| 56 |
|
| 57 |
-
|
|
|
|
| 58 |
"""Render the leaderboard table with grouped and formatted data"""
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
)
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
# Flatten column names
|
| 74 |
grouped_df.columns = [
|
| 75 |
col[0] if col[1] == "" else f"{col[0]} ({col[1]})" for col in grouped_df.columns
|
| 76 |
]
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
# Round numeric columns
|
| 79 |
numeric_cols = [
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
"Token Generation (std)",
|
| 84 |
]
|
| 85 |
grouped_df[numeric_cols] = grouped_df[numeric_cols].round(2)
|
| 86 |
|
| 87 |
# Rename columns for display
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
#
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
# Display the filtered and grouped table
|
| 112 |
st.dataframe(
|
| 113 |
-
grouped_df[display_cols]
|
| 114 |
-
["Model Size", "Benchmark", "TG Avg (s)"],
|
| 115 |
-
ascending=[False, True, True],
|
| 116 |
-
),
|
| 117 |
use_container_width=True,
|
| 118 |
height=400,
|
| 119 |
-
)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import plotly.express as px
|
| 3 |
import pandas as pd
|
| 4 |
+
from typing import Optional, Dict, List, Set
|
| 5 |
+
|
| 6 |
|
| 7 |
def create_performance_plot(df: pd.DataFrame, metric: str, title: str):
|
| 8 |
"""Create a performance comparison plot"""
|
|
|
|
| 28 |
)
|
| 29 |
return fig
|
| 30 |
|
| 31 |
+
|
| 32 |
+
def filter_dataframe(df: pd.DataFrame, filters: Dict) -> pd.DataFrame:
|
| 33 |
+
"""Apply all filters to the dataframe"""
|
| 34 |
+
if df.empty:
|
| 35 |
+
return df
|
| 36 |
+
|
| 37 |
+
# Basic filters
|
| 38 |
+
basic_filters = filters["basic_filters"]
|
| 39 |
+
if basic_filters["model"] != "All":
|
| 40 |
+
df = df[df["Model ID"] == basic_filters["model"]]
|
| 41 |
+
if basic_filters["platform"] != "All":
|
| 42 |
+
df = df[df["Platform"] == basic_filters["platform"]]
|
| 43 |
+
if basic_filters["device"] != "All":
|
| 44 |
+
df = df[df["Device"] == basic_filters["device"]]
|
| 45 |
+
|
| 46 |
+
# Benchmark configuration filters
|
| 47 |
+
benchmark_config = filters["benchmark_config"]
|
| 48 |
+
if benchmark_config["use_custom_config"]:
|
| 49 |
+
pp_min, pp_max = benchmark_config["pp_range"]
|
| 50 |
+
tg_min, tg_max = benchmark_config["tg_range"]
|
| 51 |
+
|
| 52 |
+
# Extract PP/TG values if not already present
|
| 53 |
+
if "PP Value" not in df.columns:
|
| 54 |
+
df["PP Value"] = df["Benchmark"].apply(
|
| 55 |
+
lambda x: int(x.split("pp: ")[1].split(",")[0])
|
| 56 |
+
)
|
| 57 |
+
if "TG Value" not in df.columns:
|
| 58 |
+
df["TG Value"] = df["Benchmark"].apply(
|
| 59 |
+
lambda x: int(x.split("tg: ")[1].split(")")[0])
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
df = df[
|
| 63 |
+
(df["PP Value"] >= pp_min)
|
| 64 |
+
& (df["PP Value"] <= pp_max)
|
| 65 |
+
& (df["TG Value"] >= tg_min)
|
| 66 |
+
& (df["TG Value"] <= tg_max)
|
| 67 |
+
]
|
| 68 |
+
|
| 69 |
+
# Advanced settings filters
|
| 70 |
+
advanced = filters["advanced_settings"]
|
| 71 |
+
if advanced["n_threads"]:
|
| 72 |
+
df["n_threads"] = df["initSettings"].apply(lambda x: x.get("n_threads"))
|
| 73 |
+
df = df[df["n_threads"].isin(advanced["n_threads"])]
|
| 74 |
+
|
| 75 |
+
if advanced["flash_attn"]:
|
| 76 |
+
df["flash_attn"] = df["initSettings"].apply(lambda x: x.get("flash_attn"))
|
| 77 |
+
df = df[df["flash_attn"].isin(advanced["flash_attn"])]
|
| 78 |
+
|
| 79 |
+
if advanced["cache_type"]:
|
| 80 |
+
df["cache_type_k"] = df["initSettings"].apply(lambda x: x.get("cache_type_k"))
|
| 81 |
+
df["cache_type_v"] = df["initSettings"].apply(lambda x: x.get("cache_type_v"))
|
| 82 |
+
df = df[
|
| 83 |
+
(df["cache_type_k"].isin(advanced["cache_type"]))
|
| 84 |
+
& (df["cache_type_v"].isin(advanced["cache_type"]))
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
if advanced["max_memory_usage"] < 100:
|
| 88 |
+
df = df[df["Memory Usage (%)"] <= advanced["max_memory_usage"]]
|
| 89 |
+
|
| 90 |
+
return df
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def render_performance_plots(df: pd.DataFrame, filters: Dict):
|
| 94 |
"""Render performance comparison plots"""
|
| 95 |
+
if df.empty:
|
| 96 |
+
st.warning("No data available for plotting.")
|
|
|
|
|
|
|
| 97 |
return
|
| 98 |
|
| 99 |
+
# Apply filters
|
| 100 |
+
filtered_df = filter_dataframe(df, filters)
|
| 101 |
+
if filtered_df.empty:
|
| 102 |
+
st.warning("No data matches the selected filters for plotting.")
|
| 103 |
+
return
|
| 104 |
+
|
| 105 |
+
# Extract PP/TG values if not already present
|
| 106 |
+
if "PP Value" not in filtered_df.columns:
|
| 107 |
+
filtered_df["PP Value"] = filtered_df["Benchmark"].apply(
|
| 108 |
+
lambda x: int(x.split("pp: ")[1].split(",")[0])
|
| 109 |
+
)
|
| 110 |
+
if "TG Value" not in filtered_df.columns:
|
| 111 |
+
filtered_df["TG Value"] = filtered_df["Benchmark"].apply(
|
| 112 |
+
lambda x: int(x.split("tg: ")[1].split(")")[0])
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# Extract initSettings if not already present
|
| 116 |
+
if "n_threads" not in filtered_df.columns:
|
| 117 |
+
filtered_df["n_threads"] = filtered_df["initSettings"].apply(
|
| 118 |
+
lambda x: x.get("n_threads")
|
| 119 |
+
)
|
| 120 |
+
filtered_df["flash_attn"] = filtered_df["initSettings"].apply(
|
| 121 |
+
lambda x: x.get("flash_attn")
|
| 122 |
+
)
|
| 123 |
+
filtered_df["cache_type_k"] = filtered_df["initSettings"].apply(
|
| 124 |
+
lambda x: x.get("cache_type_k")
|
| 125 |
+
)
|
| 126 |
+
filtered_df["cache_type_v"] = filtered_df["initSettings"].apply(
|
| 127 |
+
lambda x: x.get("cache_type_v")
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Group by device and platform for plotting
|
| 131 |
+
plot_group = (
|
| 132 |
+
filtered_df.groupby(["Device", "Platform"])
|
| 133 |
+
.agg(
|
| 134 |
+
{
|
| 135 |
+
"Prompt Processing": "mean",
|
| 136 |
+
"Token Generation": "mean",
|
| 137 |
+
"Memory Usage (%)": "mean",
|
| 138 |
+
"Memory Usage (GB)": "mean",
|
| 139 |
+
"CPU Cores": "first",
|
| 140 |
+
"Model Size": "first",
|
| 141 |
+
"PP Value": "first",
|
| 142 |
+
"TG Value": "first",
|
| 143 |
+
}
|
| 144 |
+
)
|
| 145 |
+
.reset_index()
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
col1, col2 = st.columns(2)
|
| 149 |
with col1:
|
| 150 |
fig1 = create_performance_plot(
|
| 151 |
+
plot_group,
|
| 152 |
"Prompt Processing",
|
| 153 |
+
f"Prompt Processing Time (PP: {plot_group['PP Value'].iloc[0]})",
|
| 154 |
)
|
| 155 |
if fig1:
|
| 156 |
st.plotly_chart(fig1, use_container_width=True)
|
| 157 |
|
| 158 |
with col2:
|
| 159 |
fig2 = create_performance_plot(
|
| 160 |
+
plot_group,
|
| 161 |
"Token Generation",
|
| 162 |
+
f"Token Generation Time (TG: {plot_group['TG Value'].iloc[0]})",
|
| 163 |
)
|
| 164 |
if fig2:
|
| 165 |
st.plotly_chart(fig2, use_container_width=True)
|
| 166 |
|
| 167 |
+
|
| 168 |
+
def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
|
| 169 |
"""Render the leaderboard table with grouped and formatted data"""
|
| 170 |
+
if df.empty:
|
| 171 |
+
st.warning("No data available for the selected filters.")
|
| 172 |
+
return
|
| 173 |
+
|
| 174 |
+
# Apply filters
|
| 175 |
+
filtered_df = filter_dataframe(df, filters)
|
| 176 |
+
if filtered_df.empty:
|
| 177 |
+
st.warning("No data matches the selected filters.")
|
| 178 |
+
return
|
| 179 |
+
|
| 180 |
+
# Extract settings from benchmark results
|
| 181 |
+
filtered_df["PP Value"] = filtered_df["Benchmark"].apply(
|
| 182 |
+
lambda x: int(x.split("pp: ")[1].split(",")[0])
|
| 183 |
+
)
|
| 184 |
+
filtered_df["TG Value"] = filtered_df["Benchmark"].apply(
|
| 185 |
+
lambda x: int(x.split("tg: ")[1].split(")")[0])
|
| 186 |
)
|
| 187 |
|
| 188 |
+
# Extract initSettings
|
| 189 |
+
filtered_df["n_threads"] = filtered_df["initSettings"].apply(
|
| 190 |
+
lambda x: x.get("n_threads")
|
| 191 |
+
)
|
| 192 |
+
filtered_df["flash_attn"] = filtered_df["initSettings"].apply(
|
| 193 |
+
lambda x: x.get("flash_attn")
|
| 194 |
+
)
|
| 195 |
+
filtered_df["cache_type_k"] = filtered_df["initSettings"].apply(
|
| 196 |
+
lambda x: x.get("cache_type_k")
|
| 197 |
+
)
|
| 198 |
+
filtered_df["cache_type_v"] = filtered_df["initSettings"].apply(
|
| 199 |
+
lambda x: x.get("cache_type_v")
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# Group by selected columns
|
| 203 |
+
grouping_cols = filters["grouping"]
|
| 204 |
+
if not grouping_cols:
|
| 205 |
+
grouping_cols = ["Model ID", "Device", "Platform"] # Default grouping
|
| 206 |
+
|
| 207 |
+
agg_dict = {
|
| 208 |
+
"Prompt Processing": ["mean", "count", "std"],
|
| 209 |
+
"Token Generation": ["mean", "std"],
|
| 210 |
+
"Memory Usage (%)": "mean",
|
| 211 |
+
"Memory Usage (GB)": "mean",
|
| 212 |
+
"Total Memory (GB)": "first",
|
| 213 |
+
"CPU Cores": "first",
|
| 214 |
+
"Model Size": "first",
|
| 215 |
+
"PP Value": "first",
|
| 216 |
+
"TG Value": "first",
|
| 217 |
+
"n_threads": "first",
|
| 218 |
+
"flash_attn": "first",
|
| 219 |
+
"cache_type_k": "first",
|
| 220 |
+
"cache_type_v": "first",
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
grouped_df = filtered_df.groupby(grouping_cols).agg(agg_dict).reset_index()
|
| 224 |
+
|
| 225 |
# Flatten column names
|
| 226 |
grouped_df.columns = [
|
| 227 |
col[0] if col[1] == "" else f"{col[0]} ({col[1]})" for col in grouped_df.columns
|
| 228 |
]
|
| 229 |
|
| 230 |
+
# Sort by Model Size, PP Value, and TG time
|
| 231 |
+
grouped_df = grouped_df.sort_values(
|
| 232 |
+
by=["Model Size (first)", "PP Value (first)", "Token Generation (mean)"],
|
| 233 |
+
ascending=[False, True, True],
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
# Round numeric columns
|
| 237 |
numeric_cols = [
|
| 238 |
+
col
|
| 239 |
+
for col in grouped_df.columns
|
| 240 |
+
if any(x in col for x in ["mean", "std", "Memory", "Size"])
|
|
|
|
| 241 |
]
|
| 242 |
grouped_df[numeric_cols] = grouped_df[numeric_cols].round(2)
|
| 243 |
|
| 244 |
# Rename columns for display
|
| 245 |
+
column_mapping = {
|
| 246 |
+
"Prompt Processing (mean)": "PP Avg (ms)",
|
| 247 |
+
"Prompt Processing (std)": "PP Std",
|
| 248 |
+
"Prompt Processing (count)": "Runs",
|
| 249 |
+
"Token Generation (mean)": "TG Avg (ms)",
|
| 250 |
+
"Token Generation (std)": "TG Std",
|
| 251 |
+
"Memory Usage (%) (mean)": "Memory Usage (%)",
|
| 252 |
+
"Memory Usage (GB) (mean)": "Memory Usage (GB)",
|
| 253 |
+
"PP Value (first)": "PP Value",
|
| 254 |
+
"TG Value (first)": "TG Value",
|
| 255 |
+
}
|
| 256 |
+
grouped_df = grouped_df.rename(columns=column_mapping)
|
| 257 |
|
| 258 |
+
# Filter visible columns
|
| 259 |
+
visible_cols = filters["visible_columns"]
|
| 260 |
+
if visible_cols:
|
| 261 |
+
# Map the user-friendly names to actual column names
|
| 262 |
+
column_name_mapping = {
|
| 263 |
+
"Device": "Device",
|
| 264 |
+
"Platform": "Platform",
|
| 265 |
+
"CPU Cores": "CPU Cores (first)",
|
| 266 |
+
"Total Memory (GB)": "Total Memory (GB) (first)",
|
| 267 |
+
"Memory Usage (%)": "Memory Usage (%)",
|
| 268 |
+
"PP Value": "PP Value",
|
| 269 |
+
"TG Value": "TG Value",
|
| 270 |
+
"Prompt Processing": "PP Avg (ms)",
|
| 271 |
+
"Token Generation": "TG Avg (ms)",
|
| 272 |
+
"Model": "Model ID",
|
| 273 |
+
"Model Size": "Model Size (first)",
|
| 274 |
+
"Model ID": "Model ID",
|
| 275 |
+
"n_threads": "n_threads (first)",
|
| 276 |
+
"flash_attn": "flash_attn (first)",
|
| 277 |
+
"cache_type_k": "cache_type_k (first)",
|
| 278 |
+
"cache_type_v": "cache_type_v (first)",
|
| 279 |
+
}
|
| 280 |
+
display_cols = [
|
| 281 |
+
column_name_mapping[col]
|
| 282 |
+
for col in visible_cols
|
| 283 |
+
if col in column_name_mapping
|
| 284 |
+
]
|
| 285 |
+
else:
|
| 286 |
+
# Default columns if none selected
|
| 287 |
+
display_cols = [
|
| 288 |
+
"Device",
|
| 289 |
+
"Platform",
|
| 290 |
+
"Model ID",
|
| 291 |
+
"Model Size (first)",
|
| 292 |
+
"PP Avg (ms)",
|
| 293 |
+
"TG Avg (ms)",
|
| 294 |
+
"Memory Usage (%)",
|
| 295 |
+
]
|
| 296 |
|
| 297 |
# Display the filtered and grouped table
|
| 298 |
st.dataframe(
|
| 299 |
+
grouped_df[display_cols],
|
|
|
|
|
|
|
|
|
|
| 300 |
use_container_width=True,
|
| 301 |
height=400,
|
| 302 |
+
)
|
src/services/firebase.py
CHANGED
|
@@ -5,6 +5,7 @@ import pandas as pd
|
|
| 5 |
import streamlit as st
|
| 6 |
import json
|
| 7 |
|
|
|
|
| 8 |
def initialize_firebase():
|
| 9 |
"""Initialize Firebase with credentials"""
|
| 10 |
try:
|
|
@@ -16,17 +17,20 @@ def initialize_firebase():
|
|
| 16 |
firebase_admin.initialize_app(cred)
|
| 17 |
return firestore.client()
|
| 18 |
|
|
|
|
| 19 |
db = initialize_firebase()
|
| 20 |
|
|
|
|
| 21 |
def normalize_device_id(device_info: dict) -> str:
|
| 22 |
"""Normalize device identifier for aggregation"""
|
| 23 |
emulator = "/Emulator" if device_info["isEmulator"] else ""
|
| 24 |
if device_info["systemName"].lower() == "ios":
|
| 25 |
return f"iOS/{device_info['model']}{emulator}"
|
| 26 |
-
|
| 27 |
memory_tier = f"{device_info['totalMemory'] // (1024**3)}GB"
|
| 28 |
return f"{device_info['brand']}/{device_info['model']}/{memory_tier}{emulator}"
|
| 29 |
|
|
|
|
| 30 |
def format_params_in_b(params: int) -> float:
|
| 31 |
"""Format number of parameters in billions"""
|
| 32 |
b_value = params / 1e9
|
|
@@ -37,78 +41,117 @@ def format_params_in_b(params: int) -> float:
|
|
| 37 |
else:
|
| 38 |
return round(b_value, 3)
|
| 39 |
|
|
|
|
| 40 |
def format_leaderboard_data(submissions: List[dict]) -> pd.DataFrame:
|
| 41 |
"""Format submissions for leaderboard display"""
|
| 42 |
formatted_data = []
|
| 43 |
-
|
| 44 |
for sub in submissions:
|
| 45 |
try:
|
| 46 |
-
benchmark_result = sub.get(
|
| 47 |
-
device_info = sub.get(
|
| 48 |
-
|
|
|
|
| 49 |
if not benchmark_result or not device_info:
|
| 50 |
continue
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
except Exception as e:
|
| 70 |
st.warning(f"Error processing submission: {str(e)}")
|
| 71 |
continue
|
| 72 |
-
|
| 73 |
return pd.DataFrame(formatted_data)
|
| 74 |
|
|
|
|
| 75 |
async def fetch_leaderboard_data(
|
| 76 |
-
model_name: Optional[str] = None,
|
| 77 |
-
benchmark_label: Optional[str] = None
|
| 78 |
) -> pd.DataFrame:
|
| 79 |
"""Fetch and process leaderboard data from Firestore"""
|
| 80 |
try:
|
| 81 |
# Navigate to the correct collection path: benchmarks/v1/submissions
|
| 82 |
-
submissions_ref =
|
| 83 |
-
|
|
|
|
|
|
|
| 84 |
# Get all documents
|
| 85 |
docs = submissions_ref.stream()
|
| 86 |
all_docs = list(docs)
|
| 87 |
-
|
| 88 |
if len(all_docs) == 0:
|
| 89 |
return pd.DataFrame()
|
| 90 |
-
|
| 91 |
# Process documents and filter in memory
|
| 92 |
submissions = []
|
| 93 |
-
|
| 94 |
for doc in all_docs:
|
| 95 |
data = doc.to_dict()
|
| 96 |
-
|
| 97 |
-
if not data or
|
| 98 |
continue
|
| 99 |
-
|
| 100 |
-
benchmark_result = data[
|
| 101 |
-
|
| 102 |
# Apply filters
|
| 103 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
continue
|
| 105 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
continue
|
| 107 |
-
|
| 108 |
submissions.append(data)
|
| 109 |
-
|
| 110 |
return format_leaderboard_data(submissions)
|
| 111 |
-
|
| 112 |
except Exception as e:
|
| 113 |
st.error(f"Error fetching data from Firestore: {str(e)}")
|
| 114 |
-
return pd.DataFrame()
|
|
|
|
| 5 |
import streamlit as st
|
| 6 |
import json
|
| 7 |
|
| 8 |
+
|
| 9 |
def initialize_firebase():
|
| 10 |
"""Initialize Firebase with credentials"""
|
| 11 |
try:
|
|
|
|
| 17 |
firebase_admin.initialize_app(cred)
|
| 18 |
return firestore.client()
|
| 19 |
|
| 20 |
+
|
| 21 |
db = initialize_firebase()
|
| 22 |
|
| 23 |
+
|
| 24 |
def normalize_device_id(device_info: dict) -> str:
|
| 25 |
"""Normalize device identifier for aggregation"""
|
| 26 |
emulator = "/Emulator" if device_info["isEmulator"] else ""
|
| 27 |
if device_info["systemName"].lower() == "ios":
|
| 28 |
return f"iOS/{device_info['model']}{emulator}"
|
| 29 |
+
|
| 30 |
memory_tier = f"{device_info['totalMemory'] // (1024**3)}GB"
|
| 31 |
return f"{device_info['brand']}/{device_info['model']}/{memory_tier}{emulator}"
|
| 32 |
|
| 33 |
+
|
| 34 |
def format_params_in_b(params: int) -> float:
|
| 35 |
"""Format number of parameters in billions"""
|
| 36 |
b_value = params / 1e9
|
|
|
|
| 41 |
else:
|
| 42 |
return round(b_value, 3)
|
| 43 |
|
| 44 |
+
|
| 45 |
def format_leaderboard_data(submissions: List[dict]) -> pd.DataFrame:
|
| 46 |
"""Format submissions for leaderboard display"""
|
| 47 |
formatted_data = []
|
| 48 |
+
|
| 49 |
for sub in submissions:
|
| 50 |
try:
|
| 51 |
+
benchmark_result = sub.get("benchmarkResult", {})
|
| 52 |
+
device_info = sub.get("deviceInfo", {})
|
| 53 |
+
|
| 54 |
+
# Skip if missing required data
|
| 55 |
if not benchmark_result or not device_info:
|
| 56 |
continue
|
| 57 |
+
|
| 58 |
+
# Skip if missing initSettings
|
| 59 |
+
if "initSettings" not in benchmark_result:
|
| 60 |
+
continue
|
| 61 |
+
|
| 62 |
+
# Skip emulators
|
| 63 |
+
if device_info.get("isEmulator", False):
|
| 64 |
+
continue
|
| 65 |
+
|
| 66 |
+
formatted_data.append(
|
| 67 |
+
{
|
| 68 |
+
"Device": device_info.get("model", "Unknown"),
|
| 69 |
+
"Platform": device_info.get("systemName", "Unknown"),
|
| 70 |
+
"Benchmark": f"{benchmark_result.get('config', {}).get('label', 'Unknown')} (pp: {benchmark_result.get('config', {}).get('pp', 'N/A')}, tg: {benchmark_result.get('config', {}).get('tg', 'N/A')})",
|
| 71 |
+
"Model": benchmark_result.get("modelName", "Unknown"),
|
| 72 |
+
"Model Size": format_params_in_b(
|
| 73 |
+
benchmark_result.get("modelNParams", 0)
|
| 74 |
+
),
|
| 75 |
+
"Prompt Processing": round(benchmark_result.get("ppAvg", 0), 2),
|
| 76 |
+
"Token Generation": round(benchmark_result.get("tgAvg", 0), 2),
|
| 77 |
+
"Memory Usage (%)": benchmark_result.get("peakMemoryUsage", {}).get(
|
| 78 |
+
"percentage"
|
| 79 |
+
),
|
| 80 |
+
"Memory Usage (GB)": (
|
| 81 |
+
round(
|
| 82 |
+
benchmark_result.get("peakMemoryUsage", {}).get("used", 0)
|
| 83 |
+
/ (1024**3),
|
| 84 |
+
2,
|
| 85 |
+
)
|
| 86 |
+
if benchmark_result.get("peakMemoryUsage", {}).get("used")
|
| 87 |
+
else None
|
| 88 |
+
),
|
| 89 |
+
"Total Memory (GB)": round(
|
| 90 |
+
device_info.get("totalMemory", 0) / (1024**3), 2
|
| 91 |
+
),
|
| 92 |
+
"CPU Cores": device_info.get("cpuDetails", {}).get(
|
| 93 |
+
"cores", "Unknown"
|
| 94 |
+
),
|
| 95 |
+
"Normalized Device ID": normalize_device_id(device_info),
|
| 96 |
+
"Timestamp": benchmark_result.get("timestamp", "Unknown"),
|
| 97 |
+
"Model ID": benchmark_result.get("modelId", "Unknown"),
|
| 98 |
+
"OID": benchmark_result.get("oid"),
|
| 99 |
+
"initSettings": benchmark_result.get("initSettings"),
|
| 100 |
+
}
|
| 101 |
+
)
|
| 102 |
except Exception as e:
|
| 103 |
st.warning(f"Error processing submission: {str(e)}")
|
| 104 |
continue
|
| 105 |
+
|
| 106 |
return pd.DataFrame(formatted_data)
|
| 107 |
|
| 108 |
+
|
| 109 |
async def fetch_leaderboard_data(
|
| 110 |
+
model_name: Optional[str] = None, benchmark_label: Optional[str] = None
|
|
|
|
| 111 |
) -> pd.DataFrame:
|
| 112 |
"""Fetch and process leaderboard data from Firestore"""
|
| 113 |
try:
|
| 114 |
# Navigate to the correct collection path: benchmarks/v1/submissions
|
| 115 |
+
submissions_ref = (
|
| 116 |
+
db.collection("benchmarks").document("v1").collection("submissions")
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
# Get all documents
|
| 120 |
docs = submissions_ref.stream()
|
| 121 |
all_docs = list(docs)
|
| 122 |
+
|
| 123 |
if len(all_docs) == 0:
|
| 124 |
return pd.DataFrame()
|
| 125 |
+
|
| 126 |
# Process documents and filter in memory
|
| 127 |
submissions = []
|
| 128 |
+
|
| 129 |
for doc in all_docs:
|
| 130 |
data = doc.to_dict()
|
| 131 |
+
|
| 132 |
+
if not data or "benchmarkResult" not in data:
|
| 133 |
continue
|
| 134 |
+
|
| 135 |
+
benchmark_result = data["benchmarkResult"]
|
| 136 |
+
|
| 137 |
# Apply filters
|
| 138 |
+
if (
|
| 139 |
+
model_name
|
| 140 |
+
and model_name != "All"
|
| 141 |
+
and benchmark_result.get("modelName") != model_name
|
| 142 |
+
):
|
| 143 |
continue
|
| 144 |
+
if (
|
| 145 |
+
benchmark_label
|
| 146 |
+
and benchmark_label != "All"
|
| 147 |
+
and benchmark_result.get("config", {}).get("label") != benchmark_label
|
| 148 |
+
):
|
| 149 |
continue
|
| 150 |
+
|
| 151 |
submissions.append(data)
|
| 152 |
+
|
| 153 |
return format_leaderboard_data(submissions)
|
| 154 |
+
|
| 155 |
except Exception as e:
|
| 156 |
st.error(f"Error fetching data from Firestore: {str(e)}")
|
| 157 |
+
return pd.DataFrame()
|