Spaces:
Sleeping
Sleeping
Ubuntu
commited on
Commit
·
0108eb5
1
Parent(s):
29807ce
Commit initial quote caster ui
Browse files- Dockerfile +24 -0
- README.md +4 -13
- app.py +66 -0
- requirements.txt +5 -0
- space.yaml +1 -0
Dockerfile
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
# Install system dependencies
|
| 4 |
+
RUN apt-get update && apt-get install -y git && rm -rf /var/lib/apt/lists/*
|
| 5 |
+
|
| 6 |
+
# Set working directory
|
| 7 |
+
WORKDIR /app
|
| 8 |
+
|
| 9 |
+
# Copy project files
|
| 10 |
+
COPY . .
|
| 11 |
+
|
| 12 |
+
# Install Python packages
|
| 13 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 14 |
+
|
| 15 |
+
# Download Hugging Face model weights on build (optional to avoid slow startup)
|
| 16 |
+
RUN python -c "from transformers import AutoTokenizer, AutoModel; \
|
| 17 |
+
AutoTokenizer.from_pretrained('aNameNobodyChose/quote-caster-encoder'); \
|
| 18 |
+
AutoModel.from_pretrained('aNameNobodyChose/quote-caster-encoder')"
|
| 19 |
+
|
| 20 |
+
# Gradio default port
|
| 21 |
+
EXPOSE 7860
|
| 22 |
+
|
| 23 |
+
# Run the Gradio app
|
| 24 |
+
CMD ["python", "app.py"]
|
README.md
CHANGED
|
@@ -1,14 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
emoji: 👁
|
| 4 |
-
colorFrom: pink
|
| 5 |
-
colorTo: purple
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.25.2
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: mit
|
| 11 |
-
short_description: Assigns dilogues to speakers in a story
|
| 12 |
-
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
| 1 |
+
# Build quote caster gradio image
|
| 2 |
+
docker build -t quote-caster-gradio .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
# Run Quote caster
|
| 5 |
+
docker run --rm -it -p 7860:7860 quote-caster-gradio
|
app.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModel, AutoTokenizer
|
| 3 |
+
from sklearn.cluster import KMeans
|
| 4 |
+
from kneed import KneeLocator
|
| 5 |
+
import torch
|
| 6 |
+
import json
|
| 7 |
+
|
| 8 |
+
def encode_quote(context: str, dialogue: str, tokenizer, model) -> torch.Tensor:
|
| 9 |
+
"""
|
| 10 |
+
Encode a single quote using [CLS] token from BERT.
|
| 11 |
+
"""
|
| 12 |
+
text = f"{context} [SEP] {dialogue}"
|
| 13 |
+
inputs = tokenizer(
|
| 14 |
+
text,
|
| 15 |
+
return_tensors="pt",
|
| 16 |
+
truncation=True,
|
| 17 |
+
padding=True,
|
| 18 |
+
max_length=512
|
| 19 |
+
)
|
| 20 |
+
outputs = model(**inputs)
|
| 21 |
+
cls_embedding = outputs.last_hidden_state[:, 0, :] # [CLS] token
|
| 22 |
+
return cls_embedding.squeeze(0)
|
| 23 |
+
|
| 24 |
+
def load_encoder():
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("aNameNobodyChose/quote-caster-encoder")
|
| 26 |
+
model = AutoModel.from_pretrained("aNameNobodyChose/quote-caster-encoder")
|
| 27 |
+
model.eval()
|
| 28 |
+
return tokenizer, model
|
| 29 |
+
|
| 30 |
+
def embed_quotes(data, tokenizer, model):
|
| 31 |
+
embeddings = []
|
| 32 |
+
for ex in data:
|
| 33 |
+
emb = encode_quote(ex["context"], ex["quote"], tokenizer, model)
|
| 34 |
+
embeddings.append(emb)
|
| 35 |
+
return torch.stack(embeddings)
|
| 36 |
+
|
| 37 |
+
def auto_k_via_elbow(embeddings, max_k=10):
|
| 38 |
+
X = embeddings.detach().numpy()
|
| 39 |
+
inertias = []
|
| 40 |
+
for k in range(1, max_k + 1):
|
| 41 |
+
kmeans = KMeans(n_clusters=k, random_state=42, n_init='auto')
|
| 42 |
+
kmeans.fit(X)
|
| 43 |
+
inertias.append(kmeans.inertia_)
|
| 44 |
+
knee = KneeLocator(range(1, max_k + 1), inertias, curve="convex", direction="decreasing")
|
| 45 |
+
return knee.knee or 2
|
| 46 |
+
|
| 47 |
+
def predict(input_text):
|
| 48 |
+
try:
|
| 49 |
+
data = json.loads(input_text)
|
| 50 |
+
tokenizer, model = load_encoder()
|
| 51 |
+
embeddings = embed_quotes(data, tokenizer, model)
|
| 52 |
+
k = auto_k_via_elbow(embeddings)
|
| 53 |
+
labels = KMeans(n_clusters=k).fit_predict(embeddings.detach().numpy())
|
| 54 |
+
for quote, cluster_id in zip(data, labels):
|
| 55 |
+
quote["predicted_speaker"] = f"SPEAKER_{cluster_id}"
|
| 56 |
+
return json.dumps(data, indent=2, ensure_ascii=False)
|
| 57 |
+
except Exception as e:
|
| 58 |
+
return f"❌ Error: {e}"
|
| 59 |
+
|
| 60 |
+
gr.Interface(
|
| 61 |
+
fn=predict,
|
| 62 |
+
inputs=gr.Textbox(lines=20, label="Paste quote-context JSON"),
|
| 63 |
+
outputs="textbox",
|
| 64 |
+
title="🗣️ QuoteCaster - Speaker Attribution from Quotes",
|
| 65 |
+
description="Paste a list of quotes with their context and get clustered speaker predictions using a transformer-based model."
|
| 66 |
+
).launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
transformers==4.39.3
|
| 4 |
+
scikit-learn==1.3.2
|
| 5 |
+
kneed
|
space.yaml
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
sdk: docker
|