""" Streamlit app for testing machine-generated code detection model with explainability. This app allows users to: 1. Input code snippets 2. Get predictions on whether the code is human-written or machine-generated 3. View feature importance and explanations for the prediction """ import streamlit as st import pandas as pd import numpy as np import json import joblib import os from typing import Dict, List, Any import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots # Import local modules from code_analytics import extract_all_code_analytics, get_analytics_feature_names from entropy_weighted_perplexity import EntropyWeightedPerplexity # Try to import SHAP for advanced explainability try: import shap SHAP_AVAILABLE = True except ImportError: SHAP_AVAILABLE = False st.set_page_config( page_title="AI Code Detection Tool", page_icon="🤖", layout="wide", initial_sidebar_state="expanded" ) class ModelLoader: """Handle loading of trained models and metadata.""" def __init__(self, model_dir: str = "results"): self.model_dir = model_dir self.model = None self.metadata = None def load_model(self) -> bool: """Load the trained model and metadata.""" try: model_path = os.path.join(self.model_dir, "trained_model.pkl") metadata_path = os.path.join(self.model_dir, "model_metadata.json") if not os.path.exists(model_path) or not os.path.exists(metadata_path): return False self.model = joblib.load(model_path) with open(metadata_path, 'r') as f: self.metadata = json.load(f) return True except Exception as e: st.error(f"Error loading model: {e}") return False def get_model_info(self) -> Dict[str, Any]: """Get model information for display.""" if self.metadata is None: return {} return { "Model Type": self.metadata.get("model_type", "Unknown"), "Number of Features": len(self.metadata.get("feature_names", [])), "F1 Score": f"{self.metadata.get('metrics', {}).get('f1_macro', 0):.4f}", "Accuracy": f"{self.metadata.get('metrics', {}).get('accuracy', 0):.4f}", "Features Used": "Code Analytics" if not self.metadata.get('config', {}).get('features', {}).get('use_llm_features', False) else "Code Analytics + LLM" } class CodeAnalyzer: """Handle code analysis and feature extraction.""" def __init__(self, model_loader: ModelLoader): self.model_loader = model_loader def extract_features(self, code: str) -> np.ndarray: """ Extract features from code using the same pipeline as training. """ try: if self.model_loader.metadata is None: raise ValueError("Model metadata not loaded") config = self.model_loader.metadata.get("config", {}) features_config = config.get("features", {}) all_features = [] # Extract LLM features if enabled (disabled in fast_config.yaml) if features_config.get("use_llm_features", False): # Initialize EWP calculator if needed ewp_calculator = EntropyWeightedPerplexity( model_name=config["model"]["name"], entropy_window_size=config["model"]["entropy_window_size"], entropy_weight=config["model"]["entropy_weight"], perplexity_weight=config["model"]["perplexity_weight"], ) # Extract LLM features llm_features = ewp_calculator.calculate_entropy_weighted_score(code) all_features.extend([ llm_features["entropy_weighted_score"], llm_features["mean_entropy"], llm_features["mean_windowed_entropy"], llm_features["mean_cross_entropy"], llm_features["sequence_length"], llm_features["entropy_cross_entropy_ratio"], llm_features["windowed_raw_entropy_ratio"], ]) # Extract code analytics features if features_config.get("use_code_analytics", True): analytics_features = extract_all_code_analytics(code) # Get features in the same order as training analytics_feature_names = get_analytics_feature_names() for feature_name in analytics_feature_names: all_features.append(analytics_features.get(feature_name, 0.0)) return np.array(all_features) except Exception as e: st.error(f"Feature extraction failed: {e}") # Return zeros if extraction fails n_features = len(self.model_loader.metadata.get("feature_names", [])) return np.zeros(n_features) def predict(self, code: str) -> Dict[str, Any]: """Make prediction and return results with explanations.""" if self.model_loader.model is None: return {"error": "Model not loaded"} try: # Extract features features = self.extract_features(code) features = features.reshape(1, -1) # Make prediction prediction = self.model_loader.model.predict(features)[0] probability = self.model_loader.model.predict_proba(features)[0] # Get feature importance if available feature_importance = self.get_feature_importance(features) return { "prediction": prediction, "probability": probability, "features": features[0], "feature_importance": feature_importance, "label": self.model_loader.metadata["label_mapping"][str(prediction)] } except Exception as e: return {"error": f"Prediction failed: {e}"} def get_feature_importance(self, features: np.ndarray) -> Dict[str, float]: """Get feature importance for the current prediction.""" try: if hasattr(self.model_loader.model, 'feature_importances_'): # For tree-based models importances = self.model_loader.model.feature_importances_ elif hasattr(self.model_loader.model, 'coef_'): # For linear models importances = np.abs(self.model_loader.model.coef_[0]) else: # For ensemble models, try to get feature importance from base estimators if hasattr(self.model_loader.model, 'estimators_'): importances = [] for estimator in self.model_loader.model.estimators_: if hasattr(estimator, 'feature_importances_'): importances.append(estimator.feature_importances_) if importances: importances = np.mean(importances, axis=0) else: importances = np.ones(len(features[0])) / len(features[0]) else: importances = np.ones(len(features[0])) / len(features[0]) feature_names = self.model_loader.metadata.get("feature_names", [f"Feature_{i}" for i in range(len(features[0]))]) return dict(zip(feature_names, importances)) except Exception as e: st.warning(f"Could not get feature importance: {e}") return {} def get_shap_explanation(self, code: str) -> Dict[str, Any]: """Get SHAP explanations for the prediction.""" if not SHAP_AVAILABLE: return {"error": "SHAP not available"} try: # Extract features for the current code features = self.extract_features(code).reshape(1, -1) # Create a SHAP explainer if hasattr(self.model_loader.model, 'feature_importances_'): # Tree-based model explainer = shap.TreeExplainer(self.model_loader.model) else: # For other models, use KernelExplainer with a background dataset # Use a small random background for efficiency background_size = min(100, 10) # Small background for speed background_features = np.random.normal( features.mean(), features.std(), (background_size, features.shape[1]) ) explainer = shap.KernelExplainer( self.model_loader.model.predict_proba, background_features ) # Get SHAP values shap_values = explainer.shap_values(features) # For binary classification, SHAP returns values for both classes if isinstance(shap_values, list): shap_values = shap_values[1] # Use positive class feature_names = self.model_loader.metadata.get("feature_names", [f"Feature_{i}" for i in range(features.shape[1])]) return { "shap_values": shap_values[0], "feature_names": feature_names, "base_value": explainer.expected_value if hasattr(explainer, 'expected_value') else 0.5, "feature_values": features[0] } except Exception as e: return {"error": f"SHAP explanation failed: {e}"} def create_shap_waterfall_plot(shap_explanation: Dict[str, Any], top_n: int = 15): """Create a SHAP waterfall-style plot showing feature contributions.""" if "error" in shap_explanation: return None shap_values = shap_explanation["shap_values"] feature_names = shap_explanation["feature_names"] feature_values = shap_explanation["feature_values"] base_value = shap_explanation.get("base_value", 0.5) # Get top contributing features (positive and negative) feature_contributions = list(zip(feature_names, shap_values, feature_values)) feature_contributions.sort(key=lambda x: abs(x[1]), reverse=True) top_features = feature_contributions[:top_n] # Create waterfall-style data names = [f[0] for f in top_features] values = [f[1] for f in top_features] colors = ['green' if v > 0 else 'red' for v in values] fig = go.Figure(go.Bar( x=values, y=names, orientation='h', marker_color=colors, text=[f"{v:.4f}" for v in values], textposition="outside" )) fig.update_layout( title=f"SHAP Feature Contributions (Top {top_n})", xaxis_title="SHAP Value (contribution to prediction)", yaxis_title="Features", height=600, yaxis={'categoryorder': 'total ascending'}, showlegend=False ) # Add vertical line at 0 fig.add_vline(x=0, line_dash="dash", line_color="black", opacity=0.5) return fig def create_feature_importance_plot(feature_importance: Dict[str, float], top_n: int = 20): """Create feature importance visualization.""" if not feature_importance: return None # Sort by importance sorted_features = sorted(feature_importance.items(), key=lambda x: abs(x[1]), reverse=True) top_features = sorted_features[:top_n] feature_names = [f[0] for f in top_features] importance_values = [f[1] for f in top_features] # Create horizontal bar plot fig = go.Figure(go.Bar( x=importance_values, y=feature_names, orientation='h', marker_color=px.colors.qualitative.Set3 )) fig.update_layout( title=f"Top {top_n} Most Important Features", xaxis_title="Feature Importance", yaxis_title="Features", height=600, yaxis={'categoryorder': 'total ascending'} ) return fig def create_prediction_gauge(probability: np.ndarray, prediction: int): """Create a gauge chart showing prediction confidence.""" confidence = max(probability) fig = go.Figure(go.Indicator( mode="gauge+number+delta", value=confidence * 100, domain={'x': [0, 1], 'y': [0, 1]}, title={'text': "Prediction Confidence (%)"}, gauge={ 'axis': {'range': [None, 100]}, 'bar': {'color': "lightgreen" if prediction == 0 else "lightcoral"}, 'steps': [ {'range': [0, 50], 'color': "lightgray"}, {'range': [50, 80], 'color': "yellow"}, {'range': [80, 100], 'color': "lightgreen"} ], 'threshold': { 'line': {'color': "red", 'width': 4}, 'thickness': 0.75, 'value': 90 } } )) fig.update_layout(height=300) return fig def main(): st.title("🤖 AI Code Detection Tool") st.markdown("### Detect whether code is human-written or machine-generated with explainable AI") # Initialize session state if 'model_loader' not in st.session_state: st.session_state.model_loader = ModelLoader() st.session_state.model_loaded = False # Sidebar with st.sidebar: st.header("Model Information") # Try to load model if not already loaded if not st.session_state.model_loaded: if st.button("Load Model"): with st.spinner("Loading model..."): if st.session_state.model_loader.load_model(): st.session_state.model_loaded = True st.success("Model loaded successfully!") else: st.error("Failed to load model. Please ensure the model files exist in the 'results' directory.") if st.session_state.model_loaded: model_info = st.session_state.model_loader.get_model_info() for key, value in model_info.items(): st.metric(key, value) # Main content if not st.session_state.model_loaded: st.warning("⚠️ Please load the model first using the sidebar.") st.info("Make sure you have trained a model using the main script with `save_model: true` in the config.") return # Initialize code analyzer analyzer = CodeAnalyzer(st.session_state.model_loader) # Code input st.header("📝 Enter Code to Analyze") # Sample code examples examples = { "Python Function": '''def fibonacci(n): if n <= 1: return n return fibonacci(n-1) + fibonacci(n-2)''', "Simple Loop": '''for i in range(10): print(f"Number: {i}") if i % 2 == 0: print("Even")''', "Class Definition": '''class Calculator: def __init__(self): self.history = [] def add(self, a, b): result = a + b self.history.append(f"{a} + {b} = {result}") return result''' } # Example selector col1, col2 = st.columns([1, 3]) with col1: selected_example = st.selectbox("Load Example:", [""] + list(examples.keys())) # Code input area with syntax highlighting if selected_example: code_input = st.text_area("Code:", examples[selected_example], height=200, key="code_input") else: code_input = st.text_area("Code:", height=200, placeholder="Enter your code here...", key="code_input") # Code validation if code_input.strip(): try: import ast ast.parse(code_input) st.success("✅ Valid Python syntax") except SyntaxError as e: st.warning(f"⚠️ Syntax error detected: {e}") st.info("Note: The model can still analyze syntactically incorrect code, but results may be less reliable.") except Exception: st.info("Code validation skipped (not standard Python)") # Analysis options with st.expander("Analysis Options"): show_all_features = st.checkbox("Show all features in results", value=False) use_shap = st.checkbox("Enable SHAP explanations", value=SHAP_AVAILABLE, disabled=not SHAP_AVAILABLE) if not SHAP_AVAILABLE: st.info("Install SHAP (`pip install shap`) for advanced explanations") # Analysis button if st.button("🔍 Analyze Code", type="primary"): if not code_input.strip(): st.warning("Please enter some code to analyze.") return with st.spinner("Analyzing code..."): result = analyzer.predict(code_input) if "error" in result: st.error(result["error"]) return # Display results st.header("📊 Analysis Results") col1, col2, col3 = st.columns(3) with col1: st.metric( "Prediction", result["label"], delta=f"{max(result['probability']):.1%} confidence" ) with col2: human_prob = result["probability"][0] machine_prob = result["probability"][1] st.metric("Human-written", f"{human_prob:.1%}") st.metric("Machine-generated", f"{machine_prob:.1%}") with col3: # Confidence gauge gauge_fig = create_prediction_gauge(result["probability"], result["prediction"]) st.plotly_chart(gauge_fig, use_container_width=True) # Feature importance and SHAP explanations if result["feature_importance"]: st.header("🔍 Feature Importance & Explanations") # Create tabs for different explanations tabs = ["Global Importance", "Feature Values"] if SHAP_AVAILABLE: tabs.append("SHAP Explanations") tab_objects = st.tabs(tabs) with tab_objects[0]: # Global Importance st.subheader("Model's Overall Feature Importance") fig = create_feature_importance_plot(result["feature_importance"], top_n=20) if fig: st.plotly_chart(fig, use_container_width=True) # Show top features in text st.subheader("Top Contributing Features:") sorted_features = sorted(result["feature_importance"].items(), key=lambda x: abs(x[1]), reverse=True) col1, col2 = st.columns(2) with col1: st.write("**Most Important:**") for i, (feature, importance) in enumerate(sorted_features[:10], 1): st.write(f"{i}. **{feature}**: {importance:.4f}") with col2: st.write("**Feature Description:**") st.info("These are the features the model finds most important globally across all predictions.") with tab_objects[1]: # Feature Values st.subheader("Current Code's Feature Values") # Show all features in a dataframe feature_names = st.session_state.model_loader.metadata.get("feature_names", []) feature_values = result["features"] if len(feature_names) == len(feature_values): feature_df = pd.DataFrame({ "Feature": feature_names, "Value": feature_values, "Global_Importance": [result["feature_importance"].get(name, 0) for name in feature_names] }).sort_values("Global_Importance", ascending=False) st.dataframe(feature_df, height=400) if SHAP_AVAILABLE and len(tab_objects) > 2: with tab_objects[2]: # SHAP Explanations st.subheader("SHAP Analysis: Why This Prediction?") with st.spinner("Computing SHAP explanations..."): shap_result = analyzer.get_shap_explanation(code_input) if "error" not in shap_result: shap_fig = create_shap_waterfall_plot(shap_result, top_n=15) if shap_fig: st.plotly_chart(shap_fig, use_container_width=True) st.info(""" **How to read SHAP values:** - Green bars push the prediction toward "Machine-generated" - Red bars push the prediction toward "Human-written" - Longer bars = stronger influence on this specific prediction - Values show how much each feature contributed to moving the prediction from the baseline """) else: st.warning(f"SHAP analysis failed: {shap_result['error']}") st.info("Falling back to global feature importance above.") else: st.warning("Feature importance not available for this model.") # Footer st.markdown("---") st.markdown("### About This Tool") col1, col2 = st.columns(2) with col1: st.info(""" **Purpose**: This tool helps detect whether code was written by humans or generated by AI. **Method**: Uses static code analysis with machine learning, focusing on patterns in: - Code structure and complexity - Naming conventions and style - Syntactic patterns and AST features - Error handling and control flow """) with col2: st.warning( """ **Limitations**: - Works with Python code only - Accuracy depends on code length and complexity - Results are probabilistic, not definitive """ ) if __name__ == "__main__": main()