Spaces:
Running
Running
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa).""" | |
| import argparse | |
| import json | |
| import logging | |
| import os | |
| import random | |
| import numpy as np | |
| import torch | |
| from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset | |
| from torch.utils.data.distributed import DistributedSampler | |
| from tqdm import tqdm, trange | |
| from transformers import WEIGHTS_NAME,AdamW,AlbertConfig,AlbertTokenizer,BertConfig,BertTokenizer,DistilBertConfig,DistilBertForSequenceClassification,DistilBertTokenizer,FlaubertConfig, FlaubertForSequenceClassification,FlaubertTokenizer,RobertaConfig,RobertaForSequenceClassification,RobertaTokenizer,XLMConfig,XLMForSequenceClassification,XLMRobertaConfig,XLMRobertaForSequenceClassification,XLMRobertaTokenizer,XLMTokenizer,XLNetConfig,XLNetForSequenceClassification,XLNetTokenizer,get_linear_schedule_with_warmup | |
| # from transformers import ( | |
| # WEIGHTS_NAME, | |
| # AdamW, | |
| # AlbertConfig, | |
| # AlbertTokenizer, | |
| # BertConfig, | |
| # BertTokenizer, | |
| # DistilBertConfig, | |
| # DistilBertForSequenceClassification, | |
| # DistilBertTokenizer, | |
| # FlaubertConfig, | |
| # FlaubertForSequenceClassification, | |
| # FlaubertTokenizer, | |
| # RobertaConfig, | |
| # RobertaForSequenceClassification, | |
| # RobertaTokenizer, | |
| # XLMConfig, | |
| # XLMForSequenceClassification, | |
| # XLMRobertaConfig, | |
| # XLMRobertaForSequenceClassification, | |
| # XLMRobertaTokenizer, | |
| # XLMTokenizer, | |
| # XLNetConfig, | |
| # XLNetForSequenceClassification, | |
| # XLNetTokenizer, | |
| # get_linear_schedule_with_warmup, | |
| # ) | |
| from pabee.modeling_albert import AlbertForSequenceClassification | |
| from pabee.modeling_bert import BertForSequenceClassification | |
| from transformers import glue_compute_metrics as compute_metrics | |
| from transformers import glue_convert_examples_to_features as convert_examples_to_features | |
| from transformers import glue_output_modes as output_modes | |
| from transformers import glue_processors as processors | |
| from torch.utils.tensorboard import SummaryWriter | |
| logger = logging.getLogger(__name__) | |
| # ALL_MODELS = sum( | |
| # ( | |
| # tuple(conf.pretrained_config_archive_map.keys()) | |
| # for conf in ( | |
| # BertConfig, | |
| # XLNetConfig, | |
| # XLMConfig, | |
| # RobertaConfig, | |
| # DistilBertConfig, | |
| # AlbertConfig, | |
| # XLMRobertaConfig, | |
| # FlaubertConfig, | |
| # ) | |
| # ), | |
| # (), | |
| # ) | |
| MODEL_CLASSES = { | |
| "bert": (BertConfig, BertForSequenceClassification, BertTokenizer), | |
| # "xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer), | |
| # "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer), | |
| # "roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer), | |
| # "distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer), | |
| "albert": (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer), | |
| # "xlmroberta": (XLMRobertaConfig, XLMRobertaForSequenceClassification, XLMRobertaTokenizer), | |
| # "flaubert": (FlaubertConfig, FlaubertForSequenceClassification, FlaubertTokenizer), | |
| } | |
| def set_seed(args): | |
| random.seed(args.seed) | |
| np.random.seed(args.seed) | |
| torch.manual_seed(args.seed) | |
| if args.n_gpu > 0: | |
| torch.cuda.manual_seed_all(args.seed) | |
| def train(args, train_dataset, model, tokenizer): | |
| """ Train the model """ | |
| if args.local_rank in [-1, 0]: | |
| tb_writer = SummaryWriter() | |
| args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) | |
| train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) | |
| train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) | |
| if args.max_steps > 0: | |
| t_total = args.max_steps | |
| args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 | |
| else: | |
| t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs | |
| # Prepare optimizer and schedule (linear warmup and decay) | |
| no_decay = ["bias", "LayerNorm.weight"] | |
| optimizer_grouped_parameters = [ | |
| { | |
| "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], | |
| "weight_decay": args.weight_decay, | |
| }, | |
| {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, | |
| ] | |
| optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) | |
| scheduler = get_linear_schedule_with_warmup( | |
| optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total | |
| ) | |
| # Check if saved optimizer or scheduler states exist | |
| if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( | |
| os.path.join(args.model_name_or_path, "scheduler.pt") | |
| ): | |
| # Load in optimizer and scheduler states | |
| optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) | |
| scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) | |
| # if args.fp16: | |
| # try: | |
| # from apex import amp | |
| # except ImportError: | |
| # raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
| # model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
| # multi-gpu training (should be after apex fp16 initialization) | |
| if args.n_gpu > 1: | |
| model = torch.nn.DataParallel(model) | |
| # Distributed training (should be after apex fp16 initialization) | |
| if args.local_rank != -1: | |
| model = torch.nn.parallel.DistributedDataParallel( | |
| model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True, | |
| ) | |
| # Train! | |
| logger.info("***** Running training *****") | |
| logger.info(" Num examples = %d", len(train_dataset)) | |
| logger.info(" Num Epochs = %d", args.num_train_epochs) | |
| logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) | |
| logger.info( | |
| " Total train batch size (w. parallel, distributed & accumulation) = %d", | |
| args.train_batch_size | |
| * args.gradient_accumulation_steps | |
| * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), | |
| ) | |
| logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) | |
| logger.info(" Total optimization steps = %d", t_total) | |
| global_step = 0 | |
| epochs_trained = 0 | |
| steps_trained_in_current_epoch = 0 | |
| # Check if continuing training from a checkpoint | |
| if os.path.exists(args.model_name_or_path): | |
| # set global_step to gobal_step of last saved checkpoint from model path | |
| global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) | |
| epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) | |
| steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) | |
| logger.info(" Continuing training from checkpoint, will skip to saved global_step") | |
| logger.info(" Continuing training from epoch %d", epochs_trained) | |
| logger.info(" Continuing training from global step %d", global_step) | |
| logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) | |
| tr_loss, logging_loss = 0.0, 0.0 | |
| model.zero_grad() | |
| train_iterator = trange( | |
| epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0], | |
| ) | |
| set_seed(args) # Added here for reproductibility | |
| for _ in train_iterator: | |
| epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) | |
| for step, batch in enumerate(epoch_iterator): | |
| # Skip past any already trained steps if resuming training | |
| if steps_trained_in_current_epoch > 0: | |
| steps_trained_in_current_epoch -= 1 | |
| continue | |
| model.train() | |
| batch = tuple(t.to(args.device) for t in batch) | |
| inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} | |
| if args.model_type != "distilbert": | |
| inputs["token_type_ids"] = ( | |
| batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None | |
| ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids | |
| outputs = model(**inputs) | |
| loss = outputs[0] # model outputs are always tuple in transformers (see doc) | |
| if args.n_gpu > 1: | |
| loss = loss.mean() # mean() to average on multi-gpu parallel training | |
| if args.gradient_accumulation_steps > 1: | |
| loss = loss / args.gradient_accumulation_steps | |
| # if args.fp16: | |
| # with amp.scale_loss(loss, optimizer) as scaled_loss: | |
| # scaled_loss.backward() | |
| else: | |
| loss.backward() | |
| tr_loss += loss.item() | |
| if (step + 1) % args.gradient_accumulation_steps == 0: | |
| # if args.fp16: | |
| # torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) | |
| # else: | |
| torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
| optimizer.step() | |
| scheduler.step() # Update learning rate schedule | |
| model.zero_grad() | |
| global_step += 1 | |
| if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
| logs = {} | |
| if ( | |
| args.local_rank == -1 and args.evaluate_during_training | |
| ): # Only evaluate when single GPU otherwise metrics may not average well | |
| results = evaluate(args, model, tokenizer) | |
| for key, value in results.items(): | |
| eval_key = "eval_{}".format(key) | |
| logs[eval_key] = value | |
| loss_scalar = (tr_loss - logging_loss) / args.logging_steps | |
| learning_rate_scalar = scheduler.get_lr()[0] | |
| logs["learning_rate"] = learning_rate_scalar | |
| logs["loss"] = loss_scalar | |
| logging_loss = tr_loss | |
| for key, value in logs.items(): | |
| tb_writer.add_scalar(key, value, global_step) | |
| print(json.dumps({**logs, **{"step": global_step}})) | |
| if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: | |
| # Save model checkpoint | |
| output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) | |
| if not os.path.exists(output_dir): | |
| os.makedirs(output_dir) | |
| model_to_save = ( | |
| model.module if hasattr(model, "module") else model | |
| ) # Take care of distributed/parallel training | |
| model_to_save.save_pretrained(output_dir) | |
| tokenizer.save_pretrained(output_dir) | |
| torch.save(args, os.path.join(output_dir, "training_args.bin")) | |
| logger.info("Saving model checkpoint to %s", output_dir) | |
| torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) | |
| torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) | |
| logger.info("Saving optimizer and scheduler states to %s", output_dir) | |
| if args.max_steps > 0 and global_step > args.max_steps: | |
| epoch_iterator.close() | |
| break | |
| if args.max_steps > 0 and global_step > args.max_steps: | |
| train_iterator.close() | |
| break | |
| if args.local_rank in [-1, 0]: | |
| tb_writer.close() | |
| return global_step, tr_loss / global_step | |
| def evaluate(args, model, tokenizer, prefix="", patience=0): | |
| if args.model_type == 'albert': | |
| model.albert.set_regression_threshold(args.regression_threshold) | |
| if args.do_train: | |
| model.albert.set_mode('last') | |
| elif args.eval_mode == 'patience': | |
| model.albert.set_mode('patience') | |
| model.albert.set_patience(patience) | |
| elif args.eval_mode == 'confi': | |
| model.albert.set_mode('confi') | |
| model.albert.set_confi_threshold(patience) | |
| model.albert.reset_stats() | |
| elif args.model_type == 'bert': | |
| model.bert.set_regression_threshold(args.regression_threshold) | |
| if args.do_train: | |
| model.bert.set_mode('last') | |
| elif args.eval_mode == 'patience': | |
| model.bert.set_mode('patience') | |
| model.bert.set_patience(patience) | |
| elif args.eval_mode == 'confi': | |
| model.bert.set_mode('confi') | |
| model.bert.set_confi_threshold(patience) | |
| model.bert.reset_stats() | |
| else: | |
| raise NotImplementedError() | |
| # Loop to handle MNLI double evaluation (matched, mis-matched) | |
| eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) | |
| eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,) | |
| results = {} | |
| for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): | |
| eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) | |
| if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: | |
| os.makedirs(eval_output_dir) | |
| args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
| # Note that DistributedSampler samples randomly | |
| eval_sampler = SequentialSampler(eval_dataset) | |
| eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) | |
| # multi-gpu eval | |
| if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): | |
| model = torch.nn.DataParallel(model) | |
| # Eval! | |
| logger.info("***** Running evaluation {} *****".format(prefix)) | |
| logger.info(" Num examples = %d", len(eval_dataset)) | |
| logger.info(" Batch size = %d", args.eval_batch_size) | |
| eval_loss = 0.0 | |
| nb_eval_steps = 0 | |
| preds = None | |
| out_label_ids = None | |
| for batch in tqdm(eval_dataloader, desc="Evaluating"): | |
| model.eval() | |
| batch = tuple(t.to(args.device) for t in batch) | |
| with torch.no_grad(): | |
| inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} | |
| if args.model_type != "distilbert": | |
| inputs["token_type_ids"] = ( | |
| batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None | |
| ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids | |
| outputs = model(**inputs) | |
| tmp_eval_loss, logits = outputs[:2] | |
| eval_loss += tmp_eval_loss.mean().item() | |
| nb_eval_steps += 1 | |
| if preds is None: | |
| preds = logits.detach().cpu().numpy() | |
| out_label_ids = inputs["labels"].detach().cpu().numpy() | |
| else: | |
| preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) | |
| out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) | |
| eval_loss = eval_loss / nb_eval_steps | |
| if args.output_mode == "classification": | |
| preds = np.argmax(preds, axis=1) | |
| elif args.output_mode == "regression": | |
| preds = np.squeeze(preds) | |
| result = compute_metrics(eval_task, preds, out_label_ids) | |
| results.update(result) | |
| output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") | |
| with open(output_eval_file, "w") as writer: | |
| logger.info("***** Eval results {} *****".format(prefix)) | |
| for key in sorted(result.keys()): | |
| logger.info(" %s = %s", key, str(result[key])) | |
| print(" %s = %s" % (key, str(result[key]))) | |
| writer.write("%s = %s\n" % (key, str(result[key]))) | |
| if args.eval_all_checkpoints and patience != 0: | |
| if args.model_type == 'albert': | |
| model.albert.log_stats() | |
| elif args.model_type == 'bert': | |
| model.bert.log_stats() | |
| else: | |
| raise NotImplementedError() | |
| return results | |
| def load_and_cache_examples(args, task, tokenizer, evaluate=False): | |
| if args.local_rank not in [-1, 0] and not evaluate: | |
| torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
| processor = processors[task]() | |
| output_mode = output_modes[task] | |
| # Load data features from cache or dataset file | |
| cached_features_file = os.path.join( | |
| args.data_dir, | |
| "cached_{}_{}_{}_{}".format( | |
| "dev" if evaluate else "train", | |
| list(filter(None, args.model_name_or_path.split("/"))).pop(), | |
| str(args.max_seq_length), | |
| str(task), | |
| ), | |
| ) | |
| if os.path.exists(cached_features_file) and not args.overwrite_cache: | |
| logger.info("Loading features from cached file %s", cached_features_file) | |
| features = torch.load(cached_features_file) | |
| else: | |
| logger.info("Creating features from dataset file at %s", args.data_dir) | |
| label_list = processor.get_labels() | |
| if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]: | |
| # HACK(label indices are swapped in RoBERTa pretrained model) | |
| label_list[1], label_list[2] = label_list[2], label_list[1] | |
| examples = ( | |
| processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) | |
| ) | |
| # convert words into features | |
| features = convert_examples_to_features( | |
| examples, | |
| tokenizer, | |
| label_list=label_list, | |
| max_length=args.max_seq_length, | |
| output_mode=output_mode, | |
| # pad_on_left=bool(args.model_type in ["xlnet"]), # pad on the left for xlnet | |
| # pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], | |
| # pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, | |
| ) | |
| if args.local_rank in [-1, 0]: | |
| logger.info("Saving features into cached file %s", cached_features_file) | |
| torch.save(features, cached_features_file) | |
| if args.local_rank == 0 and not evaluate: | |
| torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
| # Convert to Tensors and build dataset | |
| all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) | |
| all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) | |
| all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) | |
| if output_mode == "classification": | |
| all_labels = torch.tensor([f.label for f in features], dtype=torch.long) | |
| elif output_mode == "regression": | |
| all_labels = torch.tensor([f.label for f in features], dtype=torch.float) | |
| dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) | |
| return dataset | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| # Required parameters | |
| parser.add_argument( | |
| "--data_dir", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="The input data dir. Should contain the .tsv files (or other data files) for the task.", | |
| ) | |
| parser.add_argument( | |
| "--model_type", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), | |
| ) | |
| parser.add_argument( | |
| "--model_name_or_path", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="Path to pre-trained model or shortcut name selected in the list: " # + ", ".join(ALL_MODELS), | |
| ) | |
| parser.add_argument( | |
| "--task_name", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="The name of the task to train selected in the list: " + ", ".join(processors.keys()) | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument( | |
| "--patience", | |
| default='0', | |
| type=str, | |
| required=False, | |
| ) | |
| parser.add_argument( | |
| "--regression_threshold", | |
| default=0, | |
| type=float, | |
| required=False, | |
| ) | |
| # Other parameters | |
| parser.add_argument( | |
| "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--tokenizer_name", | |
| default="", | |
| type=str, | |
| help="Pretrained tokenizer name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| default="", | |
| type=str, | |
| help="Where do you want to store the pre-trained models downloaded from s3", | |
| ) | |
| parser.add_argument( | |
| "--max_seq_length", | |
| default=128, | |
| type=int, | |
| help="The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded.", | |
| ) | |
| parser.add_argument("--do_train", action="store_true", help="Whether to run training.") | |
| parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") | |
| parser.add_argument( | |
| "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step.", | |
| ) | |
| parser.add_argument( | |
| "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.", | |
| ) | |
| parser.add_argument( | |
| "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", | |
| ) | |
| parser.add_argument( | |
| "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") | |
| parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") | |
| parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument( | |
| "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.", | |
| ) | |
| parser.add_argument( | |
| "--max_steps", | |
| default=-1, | |
| type=int, | |
| help="If > 0: set total number of training steps to perform. Override num_train_epochs.", | |
| ) | |
| parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") | |
| parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") | |
| parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") | |
| parser.add_argument( | |
| "--eval_all_checkpoints", | |
| action="store_true", | |
| help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", | |
| ) | |
| parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") | |
| parser.add_argument( | |
| "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory", | |
| ) | |
| parser.add_argument( | |
| "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", | |
| ) | |
| parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") | |
| parser.add_argument( | |
| "--fp16", | |
| action="store_true", | |
| help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", | |
| ) | |
| parser.add_argument( | |
| "--fp16_opt_level", | |
| type=str, | |
| default="O1", | |
| help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
| "See details at https://nvidia.github.io/apex/amp.html", | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") | |
| parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") | |
| parser.add_argument("--eval_mode",type=str,default="patience",help='the evaluation mode for the multi-exit BERT patience|confi') | |
| args = parser.parse_args() | |
| if ( | |
| os.path.exists(args.output_dir) | |
| and os.listdir(args.output_dir) | |
| and args.do_train | |
| and not args.overwrite_output_dir | |
| ): | |
| raise ValueError( | |
| "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( | |
| args.output_dir | |
| ) | |
| ) | |
| # Setup distant debugging if needed | |
| # if args.server_ip and args.server_port: | |
| # # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
| # import ptvsd | |
| # print("Waiting for debugger attach") | |
| # ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
| # ptvsd.wait_for_attach() | |
| # TODO: 这里是不是错了? Distributed | |
| # Setup CUDA, GPU & distributed training | |
| if args.local_rank == -1 or args.no_cuda: | |
| print(f'CUDA STATUS: {torch.cuda.is_available()}') | |
| device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
| args.n_gpu = torch.cuda.device_count() | |
| else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs | |
| torch.cuda.set_device(args.local_rank) | |
| device = torch.device("cuda", args.local_rank) | |
| torch.distributed.init_process_group(backend="nccl") | |
| args.n_gpu = 1 | |
| args.device = device | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, | |
| ) | |
| logger.warning( | |
| "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
| args.local_rank, | |
| device, | |
| args.n_gpu, | |
| bool(args.local_rank != -1), | |
| args.fp16, | |
| ) | |
| # Set seed | |
| set_seed(args) | |
| # Prepare GLUE task | |
| args.task_name = args.task_name.lower() | |
| if args.task_name not in processors: | |
| raise ValueError("Task not found: %s" % (args.task_name)) | |
| processor = processors[args.task_name]() # transformers package-preprocessor | |
| args.output_mode = output_modes[args.task_name] # output type | |
| label_list = processor.get_labels() | |
| num_labels = len(label_list) | |
| print(f'num labels: {num_labels}') | |
| # Load pretrained model and tokenizer | |
| if args.local_rank not in [-1, 0]: | |
| torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
| args.model_type = args.model_type.lower() | |
| config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] | |
| config = config_class.from_pretrained( | |
| args.config_name if args.config_name else args.model_name_or_path, | |
| num_labels=num_labels, | |
| finetuning_task=args.task_name, | |
| cache_dir=args.cache_dir if args.cache_dir else None, | |
| ) | |
| tokenizer = tokenizer_class.from_pretrained( | |
| args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, | |
| do_lower_case=args.do_lower_case, | |
| cache_dir=args.cache_dir if args.cache_dir else None, | |
| ) | |
| model = model_class.from_pretrained( | |
| args.model_name_or_path, | |
| from_tf=bool(".ckpt" in args.model_name_or_path), | |
| config=config, | |
| cache_dir=args.cache_dir if args.cache_dir else None, | |
| ) | |
| if args.local_rank == 0: | |
| torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
| model.to(args.device) | |
| print('Total Model Parameters:', sum(param.numel() for param in model.parameters())) | |
| output_layers_param_num = sum(param.numel() for param in model.classifiers.parameters()) | |
| print('Output Layers Parameters:', output_layers_param_num) | |
| single_output_layer_param_num = sum(param.numel() for param in model.classifiers[0].parameters()) | |
| print('Added Output Layers Parameters:', output_layers_param_num - single_output_layer_param_num) | |
| logger.info("Training/evaluation parameters %s", args) | |
| # Training | |
| if args.do_train: | |
| train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) | |
| global_step, tr_loss = train(args, train_dataset, model, tokenizer) | |
| logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) | |
| # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() | |
| if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): | |
| # Create output directory if needed | |
| if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: | |
| os.makedirs(args.output_dir) | |
| logger.info("Saving model checkpoint to %s", args.output_dir) | |
| # Save a trained model, configuration and tokenizer using `save_pretrained()`. | |
| # They can then be reloaded using `from_pretrained()` | |
| model_to_save = ( | |
| model.module if hasattr(model, "module") else model | |
| ) # Take care of distributed/parallel training | |
| model_to_save.save_pretrained(args.output_dir) | |
| tokenizer.save_pretrained(args.output_dir) | |
| # Good practice: save your training arguments together with the trained model | |
| torch.save(args, os.path.join(args.output_dir, "training_args.bin")) | |
| # Load a trained model and vocabulary that you have fine-tuned | |
| model = model_class.from_pretrained(args.output_dir) | |
| tokenizer = tokenizer_class.from_pretrained(args.output_dir) | |
| model.to(args.device) | |
| # Evaluation | |
| results = {} | |
| if args.do_eval and args.local_rank in [-1, 0]: | |
| if args.eval_mode == 'patience': | |
| patience_list = [int(x) for x in args.patience.split(',')] | |
| elif args.eval_mode == 'confi': | |
| patience_list = [float(x) for x in args.patience.split(',')] | |
| tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) | |
| checkpoints = [args.output_dir] | |
| if args.eval_all_checkpoints: | |
| checkpoints = list( | |
| os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) | |
| ) | |
| logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging | |
| logger.info("Evaluate the following checkpoints: %s", checkpoints) | |
| for checkpoint in checkpoints: | |
| if '600' not in checkpoint: | |
| continue | |
| global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" | |
| prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" | |
| model = model_class.from_pretrained(checkpoint) | |
| model.to(args.device) | |
| print(f'Evaluation for checkpoint {prefix}') | |
| for patience in patience_list: | |
| print(f'------ Patience Threshold: {patience} ------') | |
| result = evaluate(args, model, tokenizer, prefix=prefix, patience=patience) | |
| result = dict((k + "_{}".format(global_step), v) for k, v in result.items()) | |
| results.update(result) | |
| if args.model_type == 'albert': | |
| print(f'Exits Distribution: {model.albert.exits_count_list}') | |
| elif args.model_type == 'bert': | |
| print(f'Exits Distribution: {model.bert.exits_count_list}') | |
| return results | |
| if __name__ == "__main__": | |
| main() | |