Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import easyocr
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import numpy as np
|
| 7 |
+
import os
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from gliner import GLiNER
|
| 10 |
+
|
| 11 |
+
# Set environment variables for model storage
|
| 12 |
+
os.environ['GLINER_HOME'] = str(Path.home() / '.gliner_models')
|
| 13 |
+
os.environ['TRANSFORMERS_CACHE'] = str(Path.home() / '.gliner_models' / 'cache')
|
| 14 |
+
|
| 15 |
+
# Initialize EasyOCR reader
|
| 16 |
+
reader = easyocr.Reader(['en'])
|
| 17 |
+
|
| 18 |
+
def get_model_path():
|
| 19 |
+
"""Get the path to the local model directory."""
|
| 20 |
+
base_dir = Path.home() / '.gliner_models'
|
| 21 |
+
model_dir = base_dir / 'gliner_large-v2.1'
|
| 22 |
+
return model_dir
|
| 23 |
+
|
| 24 |
+
def download_model():
|
| 25 |
+
"""Download the model if it doesn't exist locally."""
|
| 26 |
+
model_dir = get_model_path()
|
| 27 |
+
if not model_dir.exists():
|
| 28 |
+
st.info("Downloading GLiNER model for the first time... This may take a few minutes.")
|
| 29 |
+
try:
|
| 30 |
+
model_dir.parent.mkdir(parents=True, exist_ok=True)
|
| 31 |
+
temp_model = GLiNER.from_pretrained("urchade/gliner_large-v2.1")
|
| 32 |
+
temp_model.save_pretrained(str(model_dir))
|
| 33 |
+
st.success("Model downloaded successfully!")
|
| 34 |
+
return temp_model
|
| 35 |
+
except Exception as e:
|
| 36 |
+
st.error(f"Error downloading model: {str(e)}")
|
| 37 |
+
raise e
|
| 38 |
+
return None
|
| 39 |
+
|
| 40 |
+
@st.cache_resource
|
| 41 |
+
def load_gliner_model():
|
| 42 |
+
"""Load the GLiNER model, downloading it if necessary."""
|
| 43 |
+
model_dir = get_model_path()
|
| 44 |
+
if model_dir.exists():
|
| 45 |
+
try:
|
| 46 |
+
return GLiNER.from_pretrained(str(model_dir))
|
| 47 |
+
except Exception as e:
|
| 48 |
+
st.warning("Error loading existing model. Attempting to redownload...")
|
| 49 |
+
import shutil
|
| 50 |
+
shutil.rmtree(model_dir, ignore_errors=True)
|
| 51 |
+
|
| 52 |
+
model = download_model()
|
| 53 |
+
if model:
|
| 54 |
+
return model
|
| 55 |
+
return GLiNER.from_pretrained(str(model_dir))
|
| 56 |
+
|
| 57 |
+
def extract_text_from_image(image):
|
| 58 |
+
"""Extracts text from a single image using EasyOCR."""
|
| 59 |
+
image_array = np.array(image)
|
| 60 |
+
return reader.readtext(image_array, detail=0, paragraph=True)
|
| 61 |
+
|
| 62 |
+
def process_entities(text: str, model, threshold: float, nested_ner: bool) -> dict:
|
| 63 |
+
"""Process text with GLiNER model - matching app.py implementation."""
|
| 64 |
+
# Define our business card labels
|
| 65 |
+
labels = "person name, company name, job title, phone, email, address"
|
| 66 |
+
labels = [label.strip() for label in labels.split(",")]
|
| 67 |
+
|
| 68 |
+
# Get predictions
|
| 69 |
+
entities = model.predict_entities(
|
| 70 |
+
text,
|
| 71 |
+
labels,
|
| 72 |
+
flat_ner=not nested_ner,
|
| 73 |
+
threshold=threshold
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Format results matching app.py structure
|
| 77 |
+
formatted_entities = []
|
| 78 |
+
for entity in entities:
|
| 79 |
+
formatted_entities.append({
|
| 80 |
+
"entity": entity["label"],
|
| 81 |
+
"word": entity["text"],
|
| 82 |
+
"start": entity["start"],
|
| 83 |
+
"end": entity["end"]
|
| 84 |
+
})
|
| 85 |
+
|
| 86 |
+
# Organize results by category
|
| 87 |
+
results = {
|
| 88 |
+
"Person Name": [],
|
| 89 |
+
"Company Name": [],
|
| 90 |
+
"Job Title": [],
|
| 91 |
+
"Phone": [],
|
| 92 |
+
"Email": [],
|
| 93 |
+
"Address": []
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
for entity in formatted_entities:
|
| 97 |
+
category = entity["entity"].title()
|
| 98 |
+
if category in results:
|
| 99 |
+
results[category].append(entity["word"])
|
| 100 |
+
|
| 101 |
+
# Join multiple entries with semicolons
|
| 102 |
+
return {k: "; ".join(set(v)) if v else "" for k, v in results.items()}
|
| 103 |
+
|
| 104 |
+
def main():
|
| 105 |
+
st.title("Business Card Information Extractor")
|
| 106 |
+
|
| 107 |
+
# Model settings in sidebar
|
| 108 |
+
st.sidebar.title("Settings")
|
| 109 |
+
|
| 110 |
+
threshold = st.sidebar.slider(
|
| 111 |
+
"Detection Threshold",
|
| 112 |
+
min_value=0.0,
|
| 113 |
+
max_value=1.0,
|
| 114 |
+
value=0.3,
|
| 115 |
+
step=0.05,
|
| 116 |
+
help="Lower values will detect more entities (as in app.py example)"
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
nested_ner = st.sidebar.checkbox(
|
| 120 |
+
"Enable Nested NER",
|
| 121 |
+
value=True,
|
| 122 |
+
help="Allow detection of nested entities"
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Upload options
|
| 126 |
+
upload_type = st.sidebar.radio("Upload Type", ("Single", "Batch"))
|
| 127 |
+
|
| 128 |
+
# File uploader
|
| 129 |
+
uploaded_files = st.file_uploader(
|
| 130 |
+
"Upload Business Card Image(s)",
|
| 131 |
+
type=["png", "jpg", "jpeg"],
|
| 132 |
+
accept_multiple_files=(upload_type == "Batch")
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
if uploaded_files:
|
| 136 |
+
# Load model
|
| 137 |
+
model = load_gliner_model()
|
| 138 |
+
|
| 139 |
+
# Process files
|
| 140 |
+
results = []
|
| 141 |
+
files_to_process = uploaded_files if isinstance(uploaded_files, list) else [uploaded_files]
|
| 142 |
+
|
| 143 |
+
progress_bar = st.progress(0)
|
| 144 |
+
for idx, file in enumerate(files_to_process):
|
| 145 |
+
with st.expander(f"Processing {file.name}"):
|
| 146 |
+
# Load and extract text
|
| 147 |
+
image = Image.open(file)
|
| 148 |
+
extracted_text = extract_text_from_image(image)
|
| 149 |
+
clean_text = " ".join(extracted_text)
|
| 150 |
+
|
| 151 |
+
# Show extracted text
|
| 152 |
+
st.text("Extracted Text:")
|
| 153 |
+
st.text(clean_text)
|
| 154 |
+
|
| 155 |
+
# Process with GLiNER
|
| 156 |
+
result = process_entities(clean_text, model, threshold, nested_ner)
|
| 157 |
+
result["File Name"] = file.name
|
| 158 |
+
results.append(result)
|
| 159 |
+
|
| 160 |
+
# Show individual results
|
| 161 |
+
st.json(result)
|
| 162 |
+
|
| 163 |
+
progress_bar.progress((idx + 1) / len(files_to_process))
|
| 164 |
+
|
| 165 |
+
# Show final results
|
| 166 |
+
if results:
|
| 167 |
+
st.success("Processing Complete!")
|
| 168 |
+
|
| 169 |
+
# Convert to DataFrame
|
| 170 |
+
df = pd.DataFrame(results)
|
| 171 |
+
|
| 172 |
+
# Reorder columns to put filename first
|
| 173 |
+
cols = ["File Name"] + [col for col in df.columns if col != "File Name"]
|
| 174 |
+
df = df[cols]
|
| 175 |
+
|
| 176 |
+
# Display results
|
| 177 |
+
st.dataframe(df, use_container_width=True)
|
| 178 |
+
|
| 179 |
+
# Provide download option
|
| 180 |
+
csv = df.to_csv(index=False)
|
| 181 |
+
st.download_button(
|
| 182 |
+
"Download Results CSV",
|
| 183 |
+
csv,
|
| 184 |
+
"business_card_results.csv",
|
| 185 |
+
"text/csv",
|
| 186 |
+
key='download-csv'
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
if __name__ == "__main__":
|
| 190 |
+
main()
|