Spaces:
Runtime error
Runtime error
| import os | |
| from collections.abc import Iterator | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| DESCRIPTION = """\ | |
| # ALLaM-7B Instruct | |
| This Space demonstrates the LLM [ALLaM-7B-Instruct-preview](https://huggingface.co/ALLaM-AI/ALLaM-7B-Instruct-preview) by National Center for Artificial Intelligence (NCAI) at the Saudi Data and AI Authority (SDAIA)! | |
| ALLaM works with both the Arabic and English languages. | |
| """ | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
| if torch.cuda.is_available(): | |
| model_id = "ALLaM-AI/ALLaM-7B-Instruct-preview" | |
| model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| def generate( | |
| message: str, | |
| chat_history: list[dict], | |
| system_prompt: str = "أنت علام، مساعد ذكاء اصطناعي مطور من الهيئة السعودية للبيانات والذكاء الاصطناعي، تجيب على الأسئلة بطريقة مفيدة مع مراعاة القيم الثقافية المحلية.", | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.95, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> Iterator[str]: | |
| conversation = [] | |
| if system_prompt: | |
| conversation.append({"role": "system", "content": system_prompt}) | |
| conversation += chat_history | |
| conversation.append({"role": "user", "content": message}) | |
| inputs = tokenizer.apply_chat_template(conversation, tokenize=False) | |
| input_ids = tokenizer(inputs, return_tensors='pt', return_token_type_ids=False).input_ids | |
| # input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids}, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| num_beams=1, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| chat_interface = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Textbox(label="System prompt", lines=6), | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0.1, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0.6, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.9, | |
| ), | |
| gr.Slider( | |
| label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.2, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["كيف أجهز كوب شاهي؟"], | |
| ["ازيك يسطا عامل ايه؟"], | |
| ], | |
| cache_examples=False, | |
| type="messages", | |
| css=""" | |
| .chat-message { | |
| text-align: right; | |
| direction: rtl; | |
| } | |
| """, | |
| ) | |
| with gr.Blocks(css_paths="style.css", fill_height=True) as demo: | |
| gr.Markdown(DESCRIPTION) | |
| chat_interface.render() | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() |