Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,10 +9,10 @@ import torch
|
|
| 9 |
from diffusers import DiffusionPipeline
|
| 10 |
from PIL import Image
|
| 11 |
|
| 12 |
-
# Create
|
| 13 |
-
SAVE_DIR = "generated_images"
|
| 14 |
if not os.path.exists(SAVE_DIR):
|
| 15 |
-
os.makedirs(SAVE_DIR)
|
| 16 |
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
|
@@ -25,7 +25,7 @@ pipeline = pipeline.to(device)
|
|
| 25 |
MAX_SEED = np.iinfo(np.int32).max
|
| 26 |
MAX_IMAGE_SIZE = 1024
|
| 27 |
|
| 28 |
-
def save_generated_image(image):
|
| 29 |
# Generate unique filename with timestamp
|
| 30 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 31 |
unique_id = str(uuid.uuid4())[:8]
|
|
@@ -34,6 +34,12 @@ def save_generated_image(image):
|
|
| 34 |
|
| 35 |
# Save the image
|
| 36 |
image.save(filepath)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
return filepath
|
| 38 |
|
| 39 |
def load_generated_images():
|
|
@@ -47,6 +53,28 @@ def load_generated_images():
|
|
| 47 |
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
|
| 48 |
return image_files
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
@spaces.GPU(duration=120)
|
| 51 |
def inference(
|
| 52 |
prompt: str,
|
|
@@ -73,23 +101,12 @@ def inference(
|
|
| 73 |
joint_attention_kwargs={"scale": lora_scale},
|
| 74 |
).images[0]
|
| 75 |
|
| 76 |
-
# Save the generated image
|
| 77 |
-
save_generated_image(image)
|
| 78 |
|
| 79 |
# Return the image, seed, and updated gallery
|
| 80 |
return image, seed, load_generated_images()
|
| 81 |
|
| 82 |
-
def load_predefined_images():
|
| 83 |
-
predefined_images = [
|
| 84 |
-
"assets/cm1.webp",
|
| 85 |
-
"assets/cm2.webp",
|
| 86 |
-
"assets/cm3.webp",
|
| 87 |
-
"assets/cm4.webp",
|
| 88 |
-
"assets/cm5.webp",
|
| 89 |
-
"assets/cm6.webp",
|
| 90 |
-
]
|
| 91 |
-
return predefined_images
|
| 92 |
-
|
| 93 |
examples = [
|
| 94 |
"Claude Monet's 1916 painting, Water Lilies, which is currently on display at the Metropolitan Museum of Art. The painting depicts a tranquil pond with water lilies floating on the surface, surrounded by lush green foliage and a variety of colorful flowers. The colors of the flowers range from bright pinks and purples to deep blues and greens, creating a peaceful and calming atmosphere. [trigger]",
|
| 95 |
"Claude Monet's 1869 masterpiece, The Magpie, showcasing a snow-covered rural landscape at dawn. A single black magpie perches on a wooden gate, contrasting against the pristine white snow. The scene captures the subtle interplay of light and shadow on the snow's surface, with delicate blue-gray tones in the shadows and warm golden hints where sunlight touches the snow-laden branches. [trigger]",
|
|
@@ -106,6 +123,8 @@ footer {
|
|
| 106 |
"""
|
| 107 |
|
| 108 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
|
|
|
|
|
| 109 |
gr.HTML('<div class="title"> Claude Monet STUDIO </div>')
|
| 110 |
gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')
|
| 111 |
|
|
@@ -185,7 +204,8 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 185 |
columns=6,
|
| 186 |
show_label=False,
|
| 187 |
value=load_generated_images(),
|
| 188 |
-
|
|
|
|
| 189 |
|
| 190 |
# Add sample gallery section at the bottom
|
| 191 |
gr.Markdown("### Claude Monet Style Examples")
|
|
@@ -197,6 +217,7 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 197 |
value=load_predefined_images()
|
| 198 |
)
|
| 199 |
|
|
|
|
| 200 |
gr.on(
|
| 201 |
triggers=[run_button.click, prompt.submit],
|
| 202 |
fn=inference,
|
|
@@ -211,6 +232,12 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 211 |
lora_scale,
|
| 212 |
],
|
| 213 |
outputs=[result, seed, generated_gallery],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
)
|
| 215 |
|
| 216 |
demo.queue()
|
|
|
|
| 9 |
from diffusers import DiffusionPipeline
|
| 10 |
from PIL import Image
|
| 11 |
|
| 12 |
+
# Create permanent storage directory
|
| 13 |
+
SAVE_DIR = "/content/generated_images"
|
| 14 |
if not os.path.exists(SAVE_DIR):
|
| 15 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
| 16 |
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
|
|
|
| 25 |
MAX_SEED = np.iinfo(np.int32).max
|
| 26 |
MAX_IMAGE_SIZE = 1024
|
| 27 |
|
| 28 |
+
def save_generated_image(image, prompt):
|
| 29 |
# Generate unique filename with timestamp
|
| 30 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 31 |
unique_id = str(uuid.uuid4())[:8]
|
|
|
|
| 34 |
|
| 35 |
# Save the image
|
| 36 |
image.save(filepath)
|
| 37 |
+
|
| 38 |
+
# Save metadata
|
| 39 |
+
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
|
| 40 |
+
with open(metadata_file, "a", encoding="utf-8") as f:
|
| 41 |
+
f.write(f"{filename}|{prompt}|{timestamp}\n")
|
| 42 |
+
|
| 43 |
return filepath
|
| 44 |
|
| 45 |
def load_generated_images():
|
|
|
|
| 53 |
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
|
| 54 |
return image_files
|
| 55 |
|
| 56 |
+
class ImageFlagging(gr.FlaggingCallback):
|
| 57 |
+
def setup(self, components, flagging_dir: str):
|
| 58 |
+
self.components = components
|
| 59 |
+
self.flagging_dir = SAVE_DIR
|
| 60 |
+
|
| 61 |
+
def flag(self, flag_data, flag_option=None, flag_index=None, username=None) -> int:
|
| 62 |
+
"""Save image and metadata permanently"""
|
| 63 |
+
image, prompt = flag_data
|
| 64 |
+
filepath = save_generated_image(image, prompt)
|
| 65 |
+
return 0
|
| 66 |
+
|
| 67 |
+
def load_predefined_images():
|
| 68 |
+
predefined_images = [
|
| 69 |
+
"assets/cm1.webp",
|
| 70 |
+
"assets/cm2.webp",
|
| 71 |
+
"assets/cm3.webp",
|
| 72 |
+
"assets/cm4.webp",
|
| 73 |
+
"assets/cm5.webp",
|
| 74 |
+
"assets/cm6.webp",
|
| 75 |
+
]
|
| 76 |
+
return predefined_images
|
| 77 |
+
|
| 78 |
@spaces.GPU(duration=120)
|
| 79 |
def inference(
|
| 80 |
prompt: str,
|
|
|
|
| 101 |
joint_attention_kwargs={"scale": lora_scale},
|
| 102 |
).images[0]
|
| 103 |
|
| 104 |
+
# Save the generated image with the prompt
|
| 105 |
+
save_generated_image(image, prompt)
|
| 106 |
|
| 107 |
# Return the image, seed, and updated gallery
|
| 108 |
return image, seed, load_generated_images()
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
examples = [
|
| 111 |
"Claude Monet's 1916 painting, Water Lilies, which is currently on display at the Metropolitan Museum of Art. The painting depicts a tranquil pond with water lilies floating on the surface, surrounded by lush green foliage and a variety of colorful flowers. The colors of the flowers range from bright pinks and purples to deep blues and greens, creating a peaceful and calming atmosphere. [trigger]",
|
| 112 |
"Claude Monet's 1869 masterpiece, The Magpie, showcasing a snow-covered rural landscape at dawn. A single black magpie perches on a wooden gate, contrasting against the pristine white snow. The scene captures the subtle interplay of light and shadow on the snow's surface, with delicate blue-gray tones in the shadows and warm golden hints where sunlight touches the snow-laden branches. [trigger]",
|
|
|
|
| 123 |
"""
|
| 124 |
|
| 125 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
| 126 |
+
flagging_callback = ImageFlagging()
|
| 127 |
+
|
| 128 |
gr.HTML('<div class="title"> Claude Monet STUDIO </div>')
|
| 129 |
gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')
|
| 130 |
|
|
|
|
| 204 |
columns=6,
|
| 205 |
show_label=False,
|
| 206 |
value=load_generated_images(),
|
| 207 |
+
elem_id="generated_gallery"
|
| 208 |
+
).style(grid=6)
|
| 209 |
|
| 210 |
# Add sample gallery section at the bottom
|
| 211 |
gr.Markdown("### Claude Monet Style Examples")
|
|
|
|
| 217 |
value=load_predefined_images()
|
| 218 |
)
|
| 219 |
|
| 220 |
+
# Enable flagging for permanent storage
|
| 221 |
gr.on(
|
| 222 |
triggers=[run_button.click, prompt.submit],
|
| 223 |
fn=inference,
|
|
|
|
| 232 |
lora_scale,
|
| 233 |
],
|
| 234 |
outputs=[result, seed, generated_gallery],
|
| 235 |
+
).then(
|
| 236 |
+
fn=None,
|
| 237 |
+
inputs=[result, prompt],
|
| 238 |
+
outputs=None,
|
| 239 |
+
_js="(res, prompt) => clearInterval(window.GalleryIntervalID)",
|
| 240 |
+
flagging_callback=flagging_callback
|
| 241 |
)
|
| 242 |
|
| 243 |
demo.queue()
|