Janus-4o-7B / app.py
akhaliq's picture
akhaliq HF Staff
Update app.py
9f63005 verified
raw
history blame
12.6 kB
Of course. Below is the modified `app.py` that merges the "Text-to-Image" and "Text+Image-to-Image" functionalities into a single, unified `gr.ChatInterface`, removing the extra tabs and UI elements as you requested.
```python
import os
import torch
import numpy as np
from PIL import Image
import gradio as gr
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from dataclasses import dataclass
import spaces
@dataclass
class VLChatProcessorOutput():
sft_format: str
input_ids: torch.Tensor
pixel_values: torch.Tensor
num_image_tokens: torch.IntTensor
def __len__(self):
return len(self.input_ids)
def process_image(image_paths, vl_chat_processor):
"""Processes a list of image paths into pixel values."""
images = [Image.open(image_path).convert("RGB") for image_path in image_paths]
images_outputs = vl_chat_processor.image_processor(images, return_tensors="pt")
return images_outputs['pixel_values']
# === Load Janus model ===
model_path = "FreedomIntelligence/Janus-4o-7B"
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True, torch_dtype=torch.bfloat16
)
vl_gpt = vl_gpt.cuda().eval()
# === Text-and-Image-to-Image generation ===
def text_and_image_to_image_generate(input_prompt, input_image_path, output_path, vl_chat_processor, vl_gpt, temperature=1.0, parallel_size=2, cfg_weight=5, cfg_weight2=5):
"""Generates an image from a text prompt and an input image."""
torch.cuda.empty_cache()
input_img_tokens = vl_chat_processor.image_start_tag + vl_chat_processor.image_tag * vl_chat_processor.num_image_tokens + vl_chat_processor.image_end_tag + vl_chat_processor.image_start_tag + vl_chat_processor.pad_tag * vl_chat_processor.num_image_tokens + vl_chat_processor.image_end_tag
output_img_tokens = vl_chat_processor.image_start_tag
pre_data = []
input_images = [input_image_path]
img_len = len(input_images)
prompts = input_img_tokens * img_len + input_prompt
conversation = [
{"role": "<|User|>", "content": prompts},
{"role": "<|Assistant|>", "content": ""}
]
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=conversation,
sft_format=vl_chat_processor.sft_format,
system_prompt="",
)
sft_format = sft_format + output_img_tokens
image_token_num_per_image = 576
img_size = 384
patch_size = 16
with torch.inference_mode():
input_image_pixel_values = process_image(input_images, vl_chat_processor).to(torch.bfloat16).cuda()
quant_input, emb_loss_input, info_input = vl_gpt.gen_vision_model.encode(input_image_pixel_values)
image_tokens_input = info_input[2].detach().reshape(input_image_pixel_values.shape[0], -1)
image_embeds_input = vl_gpt.prepare_gen_img_embeds(image_tokens_input)
input_ids = torch.LongTensor(vl_chat_processor.tokenizer.encode(sft_format))
encoder_pixel_values = process_image(input_images, vl_chat_processor).cuda()
tokens = torch.zeros((parallel_size * 3, len(input_ids)), dtype=torch.long)
for i in range(parallel_size * 3):
tokens[i, :] = input_ids
if i % 3 == 2:
tokens[i, 1:-1] = vl_chat_processor.pad_id
pre_data.append(VLChatProcessorOutput(sft_format=sft_format, pixel_values=encoder_pixel_values, input_ids=tokens[i-2], num_image_tokens=[vl_chat_processor.num_image_tokens] * img_len))
pre_data.append(VLChatProcessorOutput(sft_format=sft_format, pixel_values=encoder_pixel_values, input_ids=tokens[i-1], num_image_tokens=[vl_chat_processor.num_image_tokens] * img_len))
pre_data.append(VLChatProcessorOutput(sft_format=sft_format, pixel_values=None, input_ids=tokens[i], num_image_tokens=[]))
prepare_inputs = vl_chat_processor.batchify(pre_data)
inputs_embeds = vl_gpt.prepare_inputs_embeds(
input_ids=tokens.cuda(),
pixel_values=prepare_inputs['pixel_values'].to(torch.bfloat16).cuda(),
images_emb_mask=prepare_inputs['images_emb_mask'].cuda(),
images_seq_mask=prepare_inputs['images_seq_mask'].cuda()
)
image_gen_indices = (tokens == vl_chat_processor.image_end_id).nonzero()
for ii, ind in enumerate(image_gen_indices):
if ii % 4 == 0:
offset = ind[1] + 2
inputs_embeds[ind[0], offset: offset + image_embeds_input.shape[1], :] = image_embeds_input[(ii // 2) % img_len]
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()
past_key_values = None
for i in range(image_token_num_per_image):
outputs = vl_gpt.language_model.model(
inputs_embeds=inputs_embeds,
use_cache=True,
past_key_values=past_key_values
)
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond_full = logits[0::3, :]
logit_cond_part = logits[1::3, :]
logit_uncond = logits[2::3, :]
logit_cond = (logit_cond_full + cfg_weight2 * logit_cond_part) / (1 + cfg_weight2)
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
past_key_values = outputs.past_key_values
dec = vl_gpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size]
)
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
# Create output directory
output_dir = os.path.dirname(output_path)
if output_dir:
os.makedirs(output_dir, exist_ok=True)
output_images = []
for i in range(parallel_size):
save_path = output_path.replace('.png', f'_{i}.png')
Image.fromarray(visual_img[i]).save(save_path)
output_images.append(save_path)
torch.cuda.empty_cache()
return output_images
# === Text-to-Image generation ===
def text_to_image_generate(input_prompt, output_path, vl_chat_processor, vl_gpt, temperature=1.0, parallel_size=2, cfg_weight=5.0):
"""Generates an image from a text prompt only."""
torch.cuda.empty_cache()
conversation = [
{"role": "<|User|>", "content": input_prompt},
{"role": "<|Assistant|>", "content": ""},
]
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=conversation,
sft_format=vl_chat_processor.sft_format,
system_prompt="",
)
prompt = sft_format + vl_chat_processor.image_start_tag
image_token_num_per_image = 576
img_size = 384
patch_size = 16
with torch.inference_mode():
input_ids = vl_chat_processor.tokenizer.encode(prompt)
input_ids = torch.LongTensor(input_ids)
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).cuda()
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()
past_key_values = None
for i in range(image_token_num_per_image):
outputs = vl_gpt.language_model.model(
inputs_embeds=inputs_embeds,
use_cache=True,
past_key_values=past_key_values
)
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token_expanded = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token_expanded)
inputs_embeds = img_embeds.unsqueeze(dim=1)
past_key_values = outputs.past_key_values
dec = vl_gpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size]
)
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
output_dir = os.path.dirname(output_path)
if output_dir:
os.makedirs(output_dir, exist_ok=True)
output_images = []
for i in range(parallel_size):
save_path = output_path.replace('.png', f'_{i}.png')
Image.fromarray(visual_img[i]).save(save_path)
output_images.append(save_path)
torch.cuda.empty_cache()
return output_images
# === Unified Gradio handler for ChatInterface ===
@spaces.GPU(duration=120)
def janus_chat_responder(message, history):
"""
Handles both text-only and multimodal (text+image) inputs from the ChatInterface.
'message' is a dictionary with 'text' and 'files' keys.
"""
output_path = "./output/chat_image.png"
prompt = message["text"]
uploaded_files = message["files"]
if uploaded_files:
# Handle text+image to image generation
# Assuming the first uploaded file is the image to process
temp_image_path = uploaded_files[0]
try:
images = text_and_image_to_image_generate(
prompt, temp_image_path, output_path, vl_chat_processor, vl_gpt
)
# Return the path to the first generated image to be displayed in the chat
return images[0]
except Exception as e:
return f"Error during image-to-image generation: {str(e)}"
else:
# Handle text-to-image generation
try:
images = text_to_image_generate(prompt, output_path, vl_chat_processor, vl_gpt)
# Return the path to the first generated image
return images[0]
except Exception as e:
return f"Error during text-to-image generation: {str(e)}"
# === Simplified Gradio UI with a single ChatInterface ===
with gr.Blocks(theme="soft", title="Janus Image Generation") as demo:
gr.Markdown("# Janus Multi-Modal Image Generation")
gr.Markdown("Generate images from text prompts, or upload an image and a prompt to transform it.")
gr.ChatInterface(
fn=janus_chat_responder,
multimodal=True,
title="Janus-4o-7B Chat",
examples=[
{"text": "a cat sitting on a windowsill", "files": []},
{"text": "a futuristic city at sunset", "files": []},
{"text": "a dragon flying over mountains", "files": []},
{"text": "Turn this into a watercolor painting", "files": ["./assets/example_image.jpg"]}
]
)
if __name__ == "__main__":
# Create a dummy image for the example if it doesn't exist
if not os.path.exists("./assets"):
os.makedirs("./assets")
if not os.path.exists("./assets/example_image.jpg"):
dummy_image = Image.new('RGB', (100, 100), color = 'red')
dummy_image.save("./assets/example_image.jpg")
demo.launch()
```