Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,34 +1,27 @@
|
|
| 1 |
import os
|
| 2 |
-
import PIL.Image
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
from transformers import AutoModelForCausalLM
|
| 7 |
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
| 8 |
import spaces
|
| 9 |
|
| 10 |
-
# Load model and processor
|
| 11 |
model_path = "FreedomIntelligence/Janus-4o-7B"
|
| 12 |
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
| 13 |
tokenizer = vl_chat_processor.tokenizer
|
|
|
|
| 14 |
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
|
| 15 |
model_path, trust_remote_code=True, torch_dtype=torch.bfloat16
|
| 16 |
)
|
| 17 |
vl_gpt = vl_gpt.cuda().eval()
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
@spaces.GPU(duration=120)
|
| 21 |
-
def janus_generate_image(message, history):
|
| 22 |
-
prompt = message
|
| 23 |
-
output_path = "./output_image.png"
|
| 24 |
-
images = text_to_image_generate(prompt, output_path, vl_chat_processor, vl_gpt, parallel_size=1)
|
| 25 |
-
return {"role": "assistant", "content": gr.Image(images[0])}
|
| 26 |
-
|
| 27 |
-
# Optimized text-to-image generation
|
| 28 |
-
|
| 29 |
def text_to_image_generate(input_prompt, output_path, vl_chat_processor, vl_gpt, temperature=1.0, parallel_size=1, cfg_weight=5):
|
| 30 |
torch.cuda.empty_cache()
|
| 31 |
|
|
|
|
| 32 |
conversation = [
|
| 33 |
{"role": "<|User|>", "content": input_prompt},
|
| 34 |
{"role": "<|Assistant|>", "content": ""},
|
|
@@ -42,28 +35,26 @@ def text_to_image_generate(input_prompt, output_path, vl_chat_processor, vl_gpt,
|
|
| 42 |
|
| 43 |
prompt = sft_format + vl_chat_processor.image_start_tag
|
| 44 |
mmgpt = vl_gpt
|
|
|
|
| 45 |
image_token_num = 576
|
| 46 |
img_size = 384
|
| 47 |
patch_size = 16
|
| 48 |
|
| 49 |
with torch.inference_mode():
|
| 50 |
-
input_ids =
|
| 51 |
input_ids = torch.LongTensor(input_ids)
|
| 52 |
|
| 53 |
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).cuda()
|
| 54 |
for i in range(parallel_size * 2):
|
| 55 |
tokens[i, :] = input_ids
|
| 56 |
if i % 2 != 0:
|
| 57 |
-
tokens[i, 1:-1] =
|
| 58 |
|
| 59 |
inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens)
|
| 60 |
generated_tokens = torch.zeros((parallel_size, image_token_num), dtype=torch.int).cuda()
|
| 61 |
|
| 62 |
for i in range(image_token_num):
|
| 63 |
-
outputs = mmgpt.language_model.model(
|
| 64 |
-
inputs_embeds=inputs_embeds,
|
| 65 |
-
use_cache=False
|
| 66 |
-
)
|
| 67 |
hidden_states = outputs.last_hidden_state
|
| 68 |
logits = mmgpt.gen_head(hidden_states[:, -1, :])
|
| 69 |
logit_cond = logits[0::2]
|
|
@@ -78,6 +69,7 @@ def text_to_image_generate(input_prompt, output_path, vl_chat_processor, vl_gpt,
|
|
| 78 |
img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
|
| 79 |
inputs_embeds = img_embeds.unsqueeze(1)
|
| 80 |
|
|
|
|
| 81 |
dec = mmgpt.gen_vision_model.decode_code(
|
| 82 |
generated_tokens.to(dtype=torch.int),
|
| 83 |
shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size]
|
|
@@ -85,26 +77,33 @@ def text_to_image_generate(input_prompt, output_path, vl_chat_processor, vl_gpt,
|
|
| 85 |
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
|
| 86 |
dec = np.clip((dec + 1) / 2 * 255, 0, 255).astype(np.uint8)
|
| 87 |
|
| 88 |
-
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
|
| 89 |
-
visual_img[:, :, :] = dec
|
| 90 |
-
|
| 91 |
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
| 92 |
output_images = []
|
| 93 |
for i in range(parallel_size):
|
| 94 |
save_path = output_path.replace('.png', f'_{i}.png')
|
| 95 |
-
|
| 96 |
output_images.append(save_path)
|
| 97 |
|
| 98 |
return output_images
|
| 99 |
|
| 100 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
demo = gr.ChatInterface(
|
| 102 |
fn=janus_generate_image,
|
| 103 |
title="Janus Text-to-Image",
|
| 104 |
description="Generate images from natural language prompts using Janus-4o-7B",
|
|
|
|
|
|
|
|
|
|
| 105 |
theme="soft",
|
| 106 |
-
fill_height=True,
|
| 107 |
-
fill_width=True
|
| 108 |
)
|
| 109 |
|
| 110 |
-
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
import gradio as gr
|
| 6 |
from transformers import AutoModelForCausalLM
|
| 7 |
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
| 8 |
import spaces
|
| 9 |
|
| 10 |
+
# === Load model and processor ===
|
| 11 |
model_path = "FreedomIntelligence/Janus-4o-7B"
|
| 12 |
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
| 13 |
tokenizer = vl_chat_processor.tokenizer
|
| 14 |
+
|
| 15 |
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
|
| 16 |
model_path, trust_remote_code=True, torch_dtype=torch.bfloat16
|
| 17 |
)
|
| 18 |
vl_gpt = vl_gpt.cuda().eval()
|
| 19 |
|
| 20 |
+
# === Image generation function ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
def text_to_image_generate(input_prompt, output_path, vl_chat_processor, vl_gpt, temperature=1.0, parallel_size=1, cfg_weight=5):
|
| 22 |
torch.cuda.empty_cache()
|
| 23 |
|
| 24 |
+
# Apply prompt formatting
|
| 25 |
conversation = [
|
| 26 |
{"role": "<|User|>", "content": input_prompt},
|
| 27 |
{"role": "<|Assistant|>", "content": ""},
|
|
|
|
| 35 |
|
| 36 |
prompt = sft_format + vl_chat_processor.image_start_tag
|
| 37 |
mmgpt = vl_gpt
|
| 38 |
+
|
| 39 |
image_token_num = 576
|
| 40 |
img_size = 384
|
| 41 |
patch_size = 16
|
| 42 |
|
| 43 |
with torch.inference_mode():
|
| 44 |
+
input_ids = tokenizer.encode(prompt)
|
| 45 |
input_ids = torch.LongTensor(input_ids)
|
| 46 |
|
| 47 |
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).cuda()
|
| 48 |
for i in range(parallel_size * 2):
|
| 49 |
tokens[i, :] = input_ids
|
| 50 |
if i % 2 != 0:
|
| 51 |
+
tokens[i, 1:-1] = tokenizer.pad_token_id # More robust
|
| 52 |
|
| 53 |
inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens)
|
| 54 |
generated_tokens = torch.zeros((parallel_size, image_token_num), dtype=torch.int).cuda()
|
| 55 |
|
| 56 |
for i in range(image_token_num):
|
| 57 |
+
outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=False)
|
|
|
|
|
|
|
|
|
|
| 58 |
hidden_states = outputs.last_hidden_state
|
| 59 |
logits = mmgpt.gen_head(hidden_states[:, -1, :])
|
| 60 |
logit_cond = logits[0::2]
|
|
|
|
| 69 |
img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
|
| 70 |
inputs_embeds = img_embeds.unsqueeze(1)
|
| 71 |
|
| 72 |
+
# Decode image
|
| 73 |
dec = mmgpt.gen_vision_model.decode_code(
|
| 74 |
generated_tokens.to(dtype=torch.int),
|
| 75 |
shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size]
|
|
|
|
| 77 |
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
|
| 78 |
dec = np.clip((dec + 1) / 2 * 255, 0, 255).astype(np.uint8)
|
| 79 |
|
|
|
|
|
|
|
|
|
|
| 80 |
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
| 81 |
output_images = []
|
| 82 |
for i in range(parallel_size):
|
| 83 |
save_path = output_path.replace('.png', f'_{i}.png')
|
| 84 |
+
Image.fromarray(dec[i]).save(save_path)
|
| 85 |
output_images.append(save_path)
|
| 86 |
|
| 87 |
return output_images
|
| 88 |
|
| 89 |
+
# === Gradio handler ===
|
| 90 |
+
@spaces.GPU(duration=120)
|
| 91 |
+
def janus_generate_image(message, history):
|
| 92 |
+
prompt = message
|
| 93 |
+
output_path = "./output/image.png"
|
| 94 |
+
images = text_to_image_generate(prompt, output_path, vl_chat_processor, vl_gpt, parallel_size=1)
|
| 95 |
+
return {"role": "assistant", "content": images[0]}
|
| 96 |
+
|
| 97 |
+
# === Gradio UI ===
|
| 98 |
demo = gr.ChatInterface(
|
| 99 |
fn=janus_generate_image,
|
| 100 |
title="Janus Text-to-Image",
|
| 101 |
description="Generate images from natural language prompts using Janus-4o-7B",
|
| 102 |
+
additional_inputs=[],
|
| 103 |
+
chatbot=gr.Chatbot(show_copy_button=True),
|
| 104 |
+
examples=["a cat", "a spaceship landing on Mars", "a fantasy castle at sunset"],
|
| 105 |
theme="soft",
|
|
|
|
|
|
|
| 106 |
)
|
| 107 |
|
| 108 |
+
if __name__ == "__main__":
|
| 109 |
+
demo.launch()
|