import os import torch import numpy as np from PIL import Image import gradio as gr from transformers import AutoModelForCausalLM from janus.models import MultiModalityCausalLM, VLChatProcessor import spaces # === Load model and processor === model_path = "FreedomIntelligence/Janus-4o-7B" vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True, torch_dtype=torch.bfloat16 ) vl_gpt = vl_gpt.cuda().eval() # === Image generation function === def text_to_image_generate(input_prompt, output_path, vl_chat_processor, vl_gpt, temperature=1.0, parallel_size=1, cfg_weight=5): torch.cuda.empty_cache() # Apply prompt formatting conversation = [ {"role": "<|User|>", "content": input_prompt}, {"role": "<|Assistant|>", "content": ""}, ] sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( conversations=conversation, sft_format=vl_chat_processor.sft_format, system_prompt="", ) prompt = sft_format + vl_chat_processor.image_start_tag mmgpt = vl_gpt image_token_num = 576 img_size = 384 patch_size = 16 with torch.inference_mode(): input_ids = tokenizer.encode(prompt) input_ids = torch.LongTensor(input_ids) tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).cuda() for i in range(parallel_size * 2): tokens[i, :] = input_ids if i % 2 != 0: tokens[i, 1:-1] = tokenizer.pad_token_id # More robust inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens) generated_tokens = torch.zeros((parallel_size, image_token_num), dtype=torch.int).cuda() for i in range(image_token_num): outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=False) hidden_states = outputs.last_hidden_state logits = mmgpt.gen_head(hidden_states[:, -1, :]) logit_cond = logits[0::2] logit_uncond = logits[1::2] logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond) probs = torch.softmax(logits / temperature, dim=-1) next_token = torch.multinomial(probs, num_samples=1) generated_tokens[:, i] = next_token.squeeze(dim=-1) next_token = torch.cat([next_token, next_token], dim=1).reshape(-1) img_embeds = mmgpt.prepare_gen_img_embeds(next_token) inputs_embeds = img_embeds.unsqueeze(1) # Decode image dec = mmgpt.gen_vision_model.decode_code( generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size] ) dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) dec = np.clip((dec + 1) / 2 * 255, 0, 255).astype(np.uint8) os.makedirs(os.path.dirname(output_path), exist_ok=True) output_images = [] for i in range(parallel_size): save_path = output_path.replace('.png', f'_{i}.png') Image.fromarray(dec[i]).save(save_path) output_images.append(save_path) return output_images # === Gradio handler === @spaces.GPU(duration=120) def janus_generate_image(message, history): prompt = message output_path = "./output/image.png" images = text_to_image_generate(prompt, output_path, vl_chat_processor, vl_gpt, parallel_size=1) return {"role": "assistant", "content": images[0]} # === Gradio UI === demo = gr.ChatInterface( fn=janus_generate_image, title="Janus Text-to-Image", description="Generate images from natural language prompts using Janus-4o-7B", additional_inputs=[], chatbot=gr.Chatbot(show_copy_button=True), examples=["a cat", "a spaceship landing on Mars", "a fantasy castle at sunset"], theme="soft", ) if __name__ == "__main__": demo.launch()