Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,230 +1,106 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
import gradio as gr
|
| 5 |
-
from
|
| 6 |
-
from transformers import (
|
| 7 |
-
AutoTokenizer,
|
| 8 |
-
AutoModelForCausalLM,
|
| 9 |
-
TextIteratorStreamer,
|
| 10 |
-
)
|
| 11 |
from huggingface_hub import login
|
| 12 |
-
import threading
|
| 13 |
import spaces
|
| 14 |
|
| 15 |
-
"""
|
| 16 |
-
Gradio chat app for facebook/MobileLLM-Pro
|
| 17 |
-
- Uses the model's chat template when using the "instruct" subfolder
|
| 18 |
-
- Streams tokens to the Gradio UI
|
| 19 |
-
- Minimal controls: max_new_tokens, temperature, top_p
|
| 20 |
-
- Optional HF_TOKEN login via env var or textbox
|
| 21 |
-
|
| 22 |
-
To run locally:
|
| 23 |
-
pip install -U gradio transformers accelerate sentencepiece huggingface_hub
|
| 24 |
-
HF_TOKEN=xxxx python app.py
|
| 25 |
-
|
| 26 |
-
On Hugging Face Spaces:
|
| 27 |
-
- Remove explicit login() call or set HF_TOKEN as a secret
|
| 28 |
-
"""
|
| 29 |
-
|
| 30 |
MODEL_ID = "facebook/MobileLLM-Pro"
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 38 |
if HF_TOKEN:
|
| 39 |
try:
|
|
|
|
| 40 |
login(token=HF_TOKEN)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
)
|
| 52 |
-
|
| 53 |
MODEL_ID,
|
| 54 |
trust_remote_code=True,
|
| 55 |
-
subfolder=
|
| 56 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 57 |
low_cpu_mem_usage=True,
|
| 58 |
device_map="auto" if torch.cuda.is_available() else None,
|
| 59 |
)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
model.eval()
|
| 66 |
-
print("[INFO] Model loaded.")
|
| 67 |
-
return tokenizer, model
|
| 68 |
-
|
| 69 |
|
| 70 |
def _history_to_messages(history: List[Tuple[str, str]]) -> List[Dict[str, str]]:
|
| 71 |
-
|
| 72 |
-
messages: List[Dict[str, str]] = []
|
| 73 |
for user_msg, bot_msg in history:
|
| 74 |
if user_msg:
|
| 75 |
-
|
| 76 |
if bot_msg:
|
| 77 |
-
|
| 78 |
-
return
|
| 79 |
-
|
| 80 |
|
| 81 |
@spaces.GPU(duration=120)
|
| 82 |
-
def generate_stream(
|
| 83 |
-
message: str,
|
| 84 |
-
history: List[Tuple[str, str]],
|
| 85 |
-
version: str,
|
| 86 |
-
max_new_tokens: int,
|
| 87 |
-
temperature: float,
|
| 88 |
-
top_p: float,
|
| 89 |
-
use_chat_template: bool,
|
| 90 |
-
state: Dict[str, Any],
|
| 91 |
-
):
|
| 92 |
-
"""Streaming text generator compatible with gr.ChatInterface.
|
| 93 |
-
|
| 94 |
-
Args map to UI controls. `state` holds tokenizer/model between calls.
|
| 95 |
"""
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
if (
|
| 101 |
-
tokenizer is None
|
| 102 |
-
or model is None
|
| 103 |
-
or state.get("version") != version
|
| 104 |
-
):
|
| 105 |
-
tokenizer, model = load_model(version)
|
| 106 |
-
state["tokenizer"], state["model"], state["version"] = tokenizer, model, version
|
| 107 |
-
|
| 108 |
-
device = next(model.parameters()).device
|
| 109 |
-
|
| 110 |
-
if use_chat_template and version == "instruct":
|
| 111 |
-
messages = _history_to_messages(history) + [
|
| 112 |
-
{"role": "user", "content": message}
|
| 113 |
-
]
|
| 114 |
-
inputs = tokenizer.apply_chat_template(
|
| 115 |
-
messages,
|
| 116 |
-
return_tensors="pt",
|
| 117 |
-
add_generation_prompt=True,
|
| 118 |
-
).to(device)
|
| 119 |
-
input_ids = inputs if isinstance(inputs, torch.Tensor) else inputs["input_ids"]
|
| 120 |
-
else:
|
| 121 |
-
input_ids = tokenizer(
|
| 122 |
-
message,
|
| 123 |
-
return_tensors="pt",
|
| 124 |
-
add_special_tokens=True,
|
| 125 |
-
)["input_ids"].to(device)
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
|
|
|
| 129 |
gen_kwargs = dict(
|
| 130 |
input_ids=input_ids,
|
| 131 |
-
max_new_tokens=
|
| 132 |
-
do_sample=
|
| 133 |
-
temperature=
|
| 134 |
-
top_p=float(
|
| 135 |
-
pad_token_id=
|
| 136 |
-
eos_token_id=
|
| 137 |
streamer=streamer,
|
| 138 |
)
|
| 139 |
|
| 140 |
-
thread = threading.Thread(target=
|
| 141 |
thread.start()
|
| 142 |
|
| 143 |
-
|
| 144 |
for new_text in streamer:
|
| 145 |
-
|
| 146 |
-
yield
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
gr.
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
""")
|
| 155 |
-
gr.Markdown(
|
| 156 |
-
"<div style='text-align: center;'>Built with <a href='https://huggingface.co/spaces/akhaliq/anycoder'>anycoder</a></div>",
|
| 157 |
-
elem_id="anycoder_attribution"
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
with gr.Row():
|
| 161 |
-
with gr.Column(scale=3):
|
| 162 |
-
chatbot = gr.Chatbot(height=420, label="MobileLLM-Pro")
|
| 163 |
-
msg = gr.Textbox(placeholder="Ask me anything…", scale=1)
|
| 164 |
-
submit = gr.Button("Send", variant="primary")
|
| 165 |
-
clear_btn = gr.Button("Clear chat")
|
| 166 |
-
with gr.Column(scale=2):
|
| 167 |
-
version = gr.Dropdown(["base", "instruct"], value=DEFAULT_VERSION, label="Subfolder (version)")
|
| 168 |
-
use_chat_template = gr.Checkbox(value=True, label="Use chat template (instruct only)")
|
| 169 |
-
max_new = gr.Slider(32, 1024, value=DEFAULT_MAX_NEW_TOKENS, step=8, label="Max new tokens")
|
| 170 |
-
temperature = gr.Slider(0.0, 1.5, value=DEFAULT_TEMPERATURE, step=0.05, label="Temperature")
|
| 171 |
-
top_p = gr.Slider(0.1, 1.0, value=DEFAULT_TOP_P, step=0.01, label="Top-p")
|
| 172 |
-
hf_token_box = gr.Textbox(value=os.getenv("HF_TOKEN", ""), label="HF_TOKEN (optional)")
|
| 173 |
-
|
| 174 |
-
state = gr.State({"tokenizer": None, "model": None, "version": None})
|
| 175 |
-
|
| 176 |
-
def _maybe_login(token: str):
|
| 177 |
-
token = (token or "").strip()
|
| 178 |
-
if not token:
|
| 179 |
-
return "(No token provided; skipping login)"
|
| 180 |
-
try:
|
| 181 |
-
login(token=token)
|
| 182 |
-
return "Logged in to Hugging Face Hub."
|
| 183 |
-
except Exception as e:
|
| 184 |
-
return f"Login failed: {e}"
|
| 185 |
-
|
| 186 |
-
login_btn = gr.Button("Login to HF (optional)")
|
| 187 |
-
login_status = gr.Markdown()
|
| 188 |
-
login_btn.click(_maybe_login, inputs=[hf_token_box], outputs=[login_status])
|
| 189 |
-
|
| 190 |
-
def user_submit(user_message, chat_history):
|
| 191 |
-
# Immediately append the user's message so the stream shows inline
|
| 192 |
-
return "", chat_history + [(user_message, None)]
|
| 193 |
-
|
| 194 |
-
def bot_respond(chat_history, version, max_new, temperature, top_p, use_chat_template, state):
|
| 195 |
-
# The last tuple is (user, None)
|
| 196 |
-
user_message = chat_history[-1][0] if chat_history else ""
|
| 197 |
-
partials = generate_stream(
|
| 198 |
-
user_message,
|
| 199 |
-
chat_history[:-1],
|
| 200 |
-
version,
|
| 201 |
-
int(max_new),
|
| 202 |
-
float(temperature),
|
| 203 |
-
float(top_p),
|
| 204 |
-
bool(use_chat_template),
|
| 205 |
-
state,
|
| 206 |
-
)
|
| 207 |
-
# Stream tokens to the last assistant message slot
|
| 208 |
-
for chunk in partials:
|
| 209 |
-
chat_history[-1] = (chat_history[-1][0], chunk)
|
| 210 |
-
yield chat_history
|
| 211 |
-
|
| 212 |
-
msg.submit(user_submit, [msg, chatbot], [msg, chatbot]).then(
|
| 213 |
-
bot_respond,
|
| 214 |
-
[chatbot, version, max_new, temperature, top_p, use_chat_template, state],
|
| 215 |
-
[chatbot],
|
| 216 |
-
)
|
| 217 |
-
submit.click(user_submit, [msg, chatbot], [msg, chatbot]).then(
|
| 218 |
-
bot_respond,
|
| 219 |
-
[chatbot, version, max_new, temperature, top_p, use_chat_template, state],
|
| 220 |
-
[chatbot],
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
def clear_chat():
|
| 224 |
-
return []
|
| 225 |
-
|
| 226 |
-
clear_btn.click(clear_chat, outputs=[chatbot])
|
| 227 |
|
| 228 |
if __name__ == "__main__":
|
| 229 |
-
|
| 230 |
-
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|
|
|
|
| 1 |
import os
|
| 2 |
+
import threading
|
| 3 |
+
from typing import List, Tuple, Dict
|
| 4 |
+
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from huggingface_hub import login
|
|
|
|
| 9 |
import spaces
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
MODEL_ID = "facebook/MobileLLM-Pro"
|
| 12 |
+
SUBFOLDER = "instruct" # use the chat template
|
| 13 |
+
MAX_NEW_TOKENS = 256
|
| 14 |
+
TEMPERATURE = 0.7
|
| 15 |
+
TOP_P = 0.95
|
| 16 |
|
| 17 |
+
# --- Silent Hub auth via env/Space Secret (no UI) ---
|
| 18 |
+
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
|
| 19 |
if HF_TOKEN:
|
| 20 |
try:
|
| 21 |
+
# No prints; stays silent if token works or fails
|
| 22 |
login(token=HF_TOKEN)
|
| 23 |
+
except Exception:
|
| 24 |
+
# Stay silent to avoid exposing anything to the UI/logs
|
| 25 |
+
pass
|
| 26 |
+
|
| 27 |
+
# Globals so we only load once
|
| 28 |
+
_tokenizer = None
|
| 29 |
+
_model = None
|
| 30 |
+
_device = None
|
| 31 |
+
|
| 32 |
+
def _ensure_loaded():
|
| 33 |
+
global _tokenizer, _model, _device
|
| 34 |
+
if _tokenizer is not None and _model is not None:
|
| 35 |
+
return
|
| 36 |
+
_tokenizer = AutoTokenizer.from_pretrained(
|
| 37 |
+
MODEL_ID, trust_remote_code=True, subfolder=SUBFOLDER
|
| 38 |
)
|
| 39 |
+
_model = AutoModelForCausalLM.from_pretrained(
|
| 40 |
MODEL_ID,
|
| 41 |
trust_remote_code=True,
|
| 42 |
+
subfolder=SUBFOLDER,
|
| 43 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 44 |
low_cpu_mem_usage=True,
|
| 45 |
device_map="auto" if torch.cuda.is_available() else None,
|
| 46 |
)
|
| 47 |
+
if _tokenizer.pad_token_id is None and _tokenizer.eos_token_id is not None:
|
| 48 |
+
_tokenizer.pad_token = _tokenizer.eos_token
|
| 49 |
+
_model.eval()
|
| 50 |
+
_device = next(_model.parameters()).device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
def _history_to_messages(history: List[Tuple[str, str]]) -> List[Dict[str, str]]:
|
| 53 |
+
msgs: List[Dict[str, str]] = []
|
|
|
|
| 54 |
for user_msg, bot_msg in history:
|
| 55 |
if user_msg:
|
| 56 |
+
msgs.append({"role": "user", "content": user_msg})
|
| 57 |
if bot_msg:
|
| 58 |
+
msgs.append({"role": "assistant", "content": bot_msg})
|
| 59 |
+
return msgs
|
|
|
|
| 60 |
|
| 61 |
@spaces.GPU(duration=120)
|
| 62 |
+
def generate_stream(message: str, history: List[Tuple[str, str]]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
"""
|
| 64 |
+
Minimal streaming chat function for gr.ChatInterface.
|
| 65 |
+
Uses instruct chat template. No token UI. No extra controls.
|
| 66 |
+
"""
|
| 67 |
+
_ensure_loaded()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
messages = _history_to_messages(history) + [{"role": "user", "content": message}]
|
| 70 |
+
inputs = _tokenizer.apply_chat_template(
|
| 71 |
+
messages,
|
| 72 |
+
return_tensors="pt",
|
| 73 |
+
add_generation_prompt=True,
|
| 74 |
+
)
|
| 75 |
+
input_ids = inputs["input_ids"] if isinstance(inputs, dict) else inputs
|
| 76 |
+
input_ids = input_ids.to(_device)
|
| 77 |
|
| 78 |
+
streamer = TextIteratorStreamer(_tokenizer, skip_special_tokens=True)
|
| 79 |
gen_kwargs = dict(
|
| 80 |
input_ids=input_ids,
|
| 81 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 82 |
+
do_sample=TEMPERATURE > 0.0,
|
| 83 |
+
temperature=float(TEMPERATURE),
|
| 84 |
+
top_p=float(TOP_P),
|
| 85 |
+
pad_token_id=_tokenizer.pad_token_id,
|
| 86 |
+
eos_token_id=_tokenizer.eos_token_id,
|
| 87 |
streamer=streamer,
|
| 88 |
)
|
| 89 |
|
| 90 |
+
thread = threading.Thread(target=_model.generate, kwargs=gen_kwargs)
|
| 91 |
thread.start()
|
| 92 |
|
| 93 |
+
output = ""
|
| 94 |
for new_text in streamer:
|
| 95 |
+
output += new_text
|
| 96 |
+
yield output
|
| 97 |
+
|
| 98 |
+
demo = gr.ChatInterface(
|
| 99 |
+
fn=generate_stream,
|
| 100 |
+
chatbot=gr.Chatbot(height=420, label="MobileLLM-Pro"),
|
| 101 |
+
title="MobileLLM-Pro — Chat",
|
| 102 |
+
description="Streaming chat with facebook/MobileLLM-Pro (instruct)",
|
| 103 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
if __name__ == "__main__":
|
| 106 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|
|
|