Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,8 +12,11 @@ import os
|
|
| 12 |
# Run the script to get pretrained models
|
| 13 |
subprocess.run(["bash", "get_pretrained_models.sh"])
|
| 14 |
|
|
|
|
|
|
|
| 15 |
# Load model and preprocessing transform
|
| 16 |
model, transform = depth_pro.create_model_and_transforms()
|
|
|
|
| 17 |
model.eval()
|
| 18 |
|
| 19 |
def resize_image(image_path, max_size=1024):
|
|
@@ -30,7 +33,7 @@ def resize_image(image_path, max_size=1024):
|
|
| 30 |
img.save(temp_file, format="PNG")
|
| 31 |
return temp_file.name
|
| 32 |
|
| 33 |
-
@spaces.GPU(duration=
|
| 34 |
def predict_depth(input_image):
|
| 35 |
temp_file = None
|
| 36 |
try:
|
|
@@ -42,6 +45,7 @@ def predict_depth(input_image):
|
|
| 42 |
image = result[0]
|
| 43 |
f_px = result[-1] # Assuming f_px is the last item in the returned tuple
|
| 44 |
image = transform(image)
|
|
|
|
| 45 |
|
| 46 |
# Run inference
|
| 47 |
prediction = model.infer(image, f_px=f_px)
|
|
|
|
| 12 |
# Run the script to get pretrained models
|
| 13 |
subprocess.run(["bash", "get_pretrained_models.sh"])
|
| 14 |
|
| 15 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
|
| 17 |
# Load model and preprocessing transform
|
| 18 |
model, transform = depth_pro.create_model_and_transforms()
|
| 19 |
+
model = model.to(device)
|
| 20 |
model.eval()
|
| 21 |
|
| 22 |
def resize_image(image_path, max_size=1024):
|
|
|
|
| 33 |
img.save(temp_file, format="PNG")
|
| 34 |
return temp_file.name
|
| 35 |
|
| 36 |
+
@spaces.GPU(duration=20)
|
| 37 |
def predict_depth(input_image):
|
| 38 |
temp_file = None
|
| 39 |
try:
|
|
|
|
| 45 |
image = result[0]
|
| 46 |
f_px = result[-1] # Assuming f_px is the last item in the returned tuple
|
| 47 |
image = transform(image)
|
| 48 |
+
image = image.to(device)
|
| 49 |
|
| 50 |
# Run inference
|
| 51 |
prediction = model.infer(image, f_px=f_px)
|