Spaces:
Build error
Build error
| # -*- coding: utf-8 -*- | |
| # Copyright (c) Alibaba, Inc. and its affiliates. | |
| # Openpose | |
| # Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose | |
| # 2nd Edited by https://github.com/Hzzone/pytorch-openpose | |
| # The implementation is modified from 3rd Edited Version by ControlNet | |
| import math | |
| import os | |
| from abc import ABCMeta | |
| from collections import OrderedDict | |
| import cv2 | |
| import matplotlib | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from PIL import Image | |
| from scipy.ndimage.filters import gaussian_filter | |
| from skimage.measure import label | |
| from scepter.modules.annotator.base_annotator import BaseAnnotator | |
| from scepter.modules.annotator.registry import ANNOTATORS | |
| from scepter.modules.utils.config import dict_to_yaml | |
| from scepter.modules.utils.file_system import FS | |
| os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' | |
| def padRightDownCorner(img, stride, padValue): | |
| h = img.shape[0] | |
| w = img.shape[1] | |
| pad = 4 * [None] | |
| pad[0] = 0 # up | |
| pad[1] = 0 # left | |
| pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down | |
| pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right | |
| img_padded = img | |
| pad_up = np.tile(img_padded[0:1, :, :] * 0 + padValue, (pad[0], 1, 1)) | |
| img_padded = np.concatenate((pad_up, img_padded), axis=0) | |
| pad_left = np.tile(img_padded[:, 0:1, :] * 0 + padValue, (1, pad[1], 1)) | |
| img_padded = np.concatenate((pad_left, img_padded), axis=1) | |
| pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + padValue, (pad[2], 1, 1)) | |
| img_padded = np.concatenate((img_padded, pad_down), axis=0) | |
| pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + padValue, (1, pad[3], 1)) | |
| img_padded = np.concatenate((img_padded, pad_right), axis=1) | |
| return img_padded, pad | |
| # transfer caffe model to pytorch which will match the layer name | |
| def transfer(model, model_weights): | |
| transfered_model_weights = {} | |
| for weights_name in model.state_dict().keys(): | |
| transfered_model_weights[weights_name] = model_weights['.'.join( | |
| weights_name.split('.')[1:])] | |
| return transfered_model_weights | |
| # draw the body keypoint and lims | |
| def draw_bodypose(canvas, candidate, subset): | |
| stickwidth = 4 | |
| limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], | |
| [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], | |
| [15, 17], [1, 16], [16, 18], [3, 17], [6, 18]] | |
| colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], | |
| [170, 255, 0], [85, 255, 0], [0, 255, 0], [0, 255, 85], | |
| [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], | |
| [0, 0, 255], [85, 0, 255], [170, 0, 255], [255, 0, 255], | |
| [255, 0, 170], [255, 0, 85]] | |
| for i in range(18): | |
| for n in range(len(subset)): | |
| index = int(subset[n][i]) | |
| if index == -1: | |
| continue | |
| x, y = candidate[index][0:2] | |
| cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) | |
| for i in range(17): | |
| for n in range(len(subset)): | |
| index = subset[n][np.array(limbSeq[i]) - 1] | |
| if -1 in index: | |
| continue | |
| cur_canvas = canvas.copy() | |
| Y = candidate[index.astype(int), 0] | |
| X = candidate[index.astype(int), 1] | |
| mX = np.mean(X) | |
| mY = np.mean(Y) | |
| length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5 | |
| angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) | |
| polygon = cv2.ellipse2Poly( | |
| (int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), | |
| 0, 360, 1) | |
| cv2.fillConvexPoly(cur_canvas, polygon, colors[i]) | |
| canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) | |
| # plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]]) | |
| # plt.imshow(canvas[:, :, [2, 1, 0]]) | |
| return canvas | |
| # image drawed by opencv is not good. | |
| def draw_handpose(canvas, all_hand_peaks, show_number=False): | |
| edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], | |
| [0, 9], [9, 10], [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], | |
| [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] | |
| for peaks in all_hand_peaks: | |
| for ie, e in enumerate(edges): | |
| if np.sum(np.all(peaks[e], axis=1) == 0) == 0: | |
| x1, y1 = peaks[e[0]] | |
| x2, y2 = peaks[e[1]] | |
| cv2.line(canvas, (x1, y1), (x2, y2), | |
| matplotlib.colors.hsv_to_rgb( | |
| [ie / float(len(edges)), 1.0, 1.0]) * 255, | |
| thickness=2) | |
| for i, keyponit in enumerate(peaks): | |
| x, y = keyponit | |
| cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) | |
| if show_number: | |
| cv2.putText(canvas, | |
| str(i), (x, y), | |
| cv2.FONT_HERSHEY_SIMPLEX, | |
| 0.3, (0, 0, 0), | |
| lineType=cv2.LINE_AA) | |
| return canvas | |
| # detect hand according to body pose keypoints | |
| # please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/ | |
| # master/src/openpose/hand/handDetector.cpp | |
| def handDetect(candidate, subset, oriImg): | |
| # right hand: wrist 4, elbow 3, shoulder 2 | |
| # left hand: wrist 7, elbow 6, shoulder 5 | |
| ratioWristElbow = 0.33 | |
| detect_result = [] | |
| image_height, image_width = oriImg.shape[0:2] | |
| for person in subset.astype(int): | |
| # if any of three not detected | |
| has_left = np.sum(person[[5, 6, 7]] == -1) == 0 | |
| has_right = np.sum(person[[2, 3, 4]] == -1) == 0 | |
| if not (has_left or has_right): | |
| continue | |
| hands = [] | |
| # left hand | |
| if has_left: | |
| left_shoulder_index, left_elbow_index, left_wrist_index = person[[ | |
| 5, 6, 7 | |
| ]] | |
| x1, y1 = candidate[left_shoulder_index][:2] | |
| x2, y2 = candidate[left_elbow_index][:2] | |
| x3, y3 = candidate[left_wrist_index][:2] | |
| hands.append([x1, y1, x2, y2, x3, y3, True]) | |
| # right hand | |
| if has_right: | |
| right_shoulder_index, right_elbow_index, right_wrist_index = person[ | |
| [2, 3, 4]] | |
| x1, y1 = candidate[right_shoulder_index][:2] | |
| x2, y2 = candidate[right_elbow_index][:2] | |
| x3, y3 = candidate[right_wrist_index][:2] | |
| hands.append([x1, y1, x2, y2, x3, y3, False]) | |
| for x1, y1, x2, y2, x3, y3, is_left in hands: | |
| # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox | |
| # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]); | |
| # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]); | |
| # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow); | |
| # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder); | |
| # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder); | |
| x = x3 + ratioWristElbow * (x3 - x2) | |
| y = y3 + ratioWristElbow * (y3 - y2) | |
| distanceWristElbow = math.sqrt((x3 - x2)**2 + (y3 - y2)**2) | |
| distanceElbowShoulder = math.sqrt((x2 - x1)**2 + (y2 - y1)**2) | |
| width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) | |
| # x-y refers to the center --> offset to topLeft point | |
| # handRectangle.x -= handRectangle.width / 2.f; | |
| # handRectangle.y -= handRectangle.height / 2.f; | |
| x -= width / 2 | |
| y -= width / 2 # width = height | |
| # overflow the image | |
| if x < 0: | |
| x = 0 | |
| if y < 0: | |
| y = 0 | |
| width1 = width | |
| width2 = width | |
| if x + width > image_width: | |
| width1 = image_width - x | |
| if y + width > image_height: | |
| width2 = image_height - y | |
| width = min(width1, width2) | |
| # the max hand box value is 20 pixels | |
| if width >= 20: | |
| detect_result.append([int(x), int(y), int(width), is_left]) | |
| ''' | |
| return value: [[x, y, w, True if left hand else False]]. | |
| width=height since the network require squared input. | |
| x, y is the coordinate of top left | |
| ''' | |
| return detect_result | |
| # get max index of 2d array | |
| def npmax(array): | |
| arrayindex = array.argmax(1) | |
| arrayvalue = array.max(1) | |
| i = arrayvalue.argmax() | |
| j = arrayindex[i] | |
| return i, j | |
| def make_layers(block, no_relu_layers): | |
| layers = [] | |
| for layer_name, v in block.items(): | |
| if 'pool' in layer_name: | |
| layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2]) | |
| layers.append((layer_name, layer)) | |
| else: | |
| conv2d = nn.Conv2d(in_channels=v[0], | |
| out_channels=v[1], | |
| kernel_size=v[2], | |
| stride=v[3], | |
| padding=v[4]) | |
| layers.append((layer_name, conv2d)) | |
| if layer_name not in no_relu_layers: | |
| layers.append(('relu_' + layer_name, nn.ReLU(inplace=True))) | |
| return nn.Sequential(OrderedDict(layers)) | |
| class bodypose_model(nn.Module): | |
| def __init__(self): | |
| super(bodypose_model, self).__init__() | |
| # these layers have no relu layer | |
| no_relu_layers = [ | |
| 'conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1', | |
| 'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2', | |
| 'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1', | |
| 'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1' | |
| ] | |
| blocks = {} | |
| block0 = OrderedDict([('conv1_1', [3, 64, 3, 1, 1]), | |
| ('conv1_2', [64, 64, 3, 1, 1]), | |
| ('pool1_stage1', [2, 2, 0]), | |
| ('conv2_1', [64, 128, 3, 1, 1]), | |
| ('conv2_2', [128, 128, 3, 1, 1]), | |
| ('pool2_stage1', [2, 2, 0]), | |
| ('conv3_1', [128, 256, 3, 1, 1]), | |
| ('conv3_2', [256, 256, 3, 1, 1]), | |
| ('conv3_3', [256, 256, 3, 1, 1]), | |
| ('conv3_4', [256, 256, 3, 1, 1]), | |
| ('pool3_stage1', [2, 2, 0]), | |
| ('conv4_1', [256, 512, 3, 1, 1]), | |
| ('conv4_2', [512, 512, 3, 1, 1]), | |
| ('conv4_3_CPM', [512, 256, 3, 1, 1]), | |
| ('conv4_4_CPM', [256, 128, 3, 1, 1])]) | |
| # Stage 1 | |
| block1_1 = OrderedDict([('conv5_1_CPM_L1', [128, 128, 3, 1, 1]), | |
| ('conv5_2_CPM_L1', [128, 128, 3, 1, 1]), | |
| ('conv5_3_CPM_L1', [128, 128, 3, 1, 1]), | |
| ('conv5_4_CPM_L1', [128, 512, 1, 1, 0]), | |
| ('conv5_5_CPM_L1', [512, 38, 1, 1, 0])]) | |
| block1_2 = OrderedDict([('conv5_1_CPM_L2', [128, 128, 3, 1, 1]), | |
| ('conv5_2_CPM_L2', [128, 128, 3, 1, 1]), | |
| ('conv5_3_CPM_L2', [128, 128, 3, 1, 1]), | |
| ('conv5_4_CPM_L2', [128, 512, 1, 1, 0]), | |
| ('conv5_5_CPM_L2', [512, 19, 1, 1, 0])]) | |
| blocks['block1_1'] = block1_1 | |
| blocks['block1_2'] = block1_2 | |
| self.model0 = make_layers(block0, no_relu_layers) | |
| # Stages 2 - 6 | |
| for i in range(2, 7): | |
| blocks['block%d_1' % i] = OrderedDict([ | |
| ('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]), | |
| ('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]), | |
| ('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0]) | |
| ]) | |
| blocks['block%d_2' % i] = OrderedDict([ | |
| ('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]), | |
| ('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]), | |
| ('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0]) | |
| ]) | |
| for k in blocks.keys(): | |
| blocks[k] = make_layers(blocks[k], no_relu_layers) | |
| self.model1_1 = blocks['block1_1'] | |
| self.model2_1 = blocks['block2_1'] | |
| self.model3_1 = blocks['block3_1'] | |
| self.model4_1 = blocks['block4_1'] | |
| self.model5_1 = blocks['block5_1'] | |
| self.model6_1 = blocks['block6_1'] | |
| self.model1_2 = blocks['block1_2'] | |
| self.model2_2 = blocks['block2_2'] | |
| self.model3_2 = blocks['block3_2'] | |
| self.model4_2 = blocks['block4_2'] | |
| self.model5_2 = blocks['block5_2'] | |
| self.model6_2 = blocks['block6_2'] | |
| def forward(self, x): | |
| out1 = self.model0(x) | |
| out1_1 = self.model1_1(out1) | |
| out1_2 = self.model1_2(out1) | |
| out2 = torch.cat([out1_1, out1_2, out1], 1) | |
| out2_1 = self.model2_1(out2) | |
| out2_2 = self.model2_2(out2) | |
| out3 = torch.cat([out2_1, out2_2, out1], 1) | |
| out3_1 = self.model3_1(out3) | |
| out3_2 = self.model3_2(out3) | |
| out4 = torch.cat([out3_1, out3_2, out1], 1) | |
| out4_1 = self.model4_1(out4) | |
| out4_2 = self.model4_2(out4) | |
| out5 = torch.cat([out4_1, out4_2, out1], 1) | |
| out5_1 = self.model5_1(out5) | |
| out5_2 = self.model5_2(out5) | |
| out6 = torch.cat([out5_1, out5_2, out1], 1) | |
| out6_1 = self.model6_1(out6) | |
| out6_2 = self.model6_2(out6) | |
| return out6_1, out6_2 | |
| class handpose_model(nn.Module): | |
| def __init__(self): | |
| super(handpose_model, self).__init__() | |
| # these layers have no relu layer | |
| no_relu_layers = [ | |
| 'conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3', 'Mconv7_stage4', | |
| 'Mconv7_stage5', 'Mconv7_stage6' | |
| ] | |
| # stage 1 | |
| block1_0 = OrderedDict([('conv1_1', [3, 64, 3, 1, 1]), | |
| ('conv1_2', [64, 64, 3, 1, 1]), | |
| ('pool1_stage1', [2, 2, 0]), | |
| ('conv2_1', [64, 128, 3, 1, 1]), | |
| ('conv2_2', [128, 128, 3, 1, 1]), | |
| ('pool2_stage1', [2, 2, 0]), | |
| ('conv3_1', [128, 256, 3, 1, 1]), | |
| ('conv3_2', [256, 256, 3, 1, 1]), | |
| ('conv3_3', [256, 256, 3, 1, 1]), | |
| ('conv3_4', [256, 256, 3, 1, 1]), | |
| ('pool3_stage1', [2, 2, 0]), | |
| ('conv4_1', [256, 512, 3, 1, 1]), | |
| ('conv4_2', [512, 512, 3, 1, 1]), | |
| ('conv4_3', [512, 512, 3, 1, 1]), | |
| ('conv4_4', [512, 512, 3, 1, 1]), | |
| ('conv5_1', [512, 512, 3, 1, 1]), | |
| ('conv5_2', [512, 512, 3, 1, 1]), | |
| ('conv5_3_CPM', [512, 128, 3, 1, 1])]) | |
| block1_1 = OrderedDict([('conv6_1_CPM', [128, 512, 1, 1, 0]), | |
| ('conv6_2_CPM', [512, 22, 1, 1, 0])]) | |
| blocks = {} | |
| blocks['block1_0'] = block1_0 | |
| blocks['block1_1'] = block1_1 | |
| # stage 2-6 | |
| for i in range(2, 7): | |
| blocks['block%d' % i] = OrderedDict([ | |
| ('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]), | |
| ('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]), | |
| ('Mconv7_stage%d' % i, [128, 22, 1, 1, 0]) | |
| ]) | |
| for k in blocks.keys(): | |
| blocks[k] = make_layers(blocks[k], no_relu_layers) | |
| self.model1_0 = blocks['block1_0'] | |
| self.model1_1 = blocks['block1_1'] | |
| self.model2 = blocks['block2'] | |
| self.model3 = blocks['block3'] | |
| self.model4 = blocks['block4'] | |
| self.model5 = blocks['block5'] | |
| self.model6 = blocks['block6'] | |
| def forward(self, x): | |
| out1_0 = self.model1_0(x) | |
| out1_1 = self.model1_1(out1_0) | |
| concat_stage2 = torch.cat([out1_1, out1_0], 1) | |
| out_stage2 = self.model2(concat_stage2) | |
| concat_stage3 = torch.cat([out_stage2, out1_0], 1) | |
| out_stage3 = self.model3(concat_stage3) | |
| concat_stage4 = torch.cat([out_stage3, out1_0], 1) | |
| out_stage4 = self.model4(concat_stage4) | |
| concat_stage5 = torch.cat([out_stage4, out1_0], 1) | |
| out_stage5 = self.model5(concat_stage5) | |
| concat_stage6 = torch.cat([out_stage5, out1_0], 1) | |
| out_stage6 = self.model6(concat_stage6) | |
| return out_stage6 | |
| class Hand(object): | |
| def __init__(self, model_path, device='cuda'): | |
| self.model = handpose_model() | |
| if torch.cuda.is_available(): | |
| self.model = self.model.to(device) | |
| model_dict = transfer(self.model, torch.load(model_path)) | |
| self.model.load_state_dict(model_dict) | |
| self.model.eval() | |
| self.device = device | |
| def __call__(self, oriImg): | |
| scale_search = [0.5, 1.0, 1.5, 2.0] | |
| # scale_search = [0.5] | |
| boxsize = 368 | |
| stride = 8 | |
| padValue = 128 | |
| thre = 0.05 | |
| multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] | |
| heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22)) | |
| # paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) | |
| for m in range(len(multiplier)): | |
| scale = multiplier[m] | |
| imageToTest = cv2.resize(oriImg, (0, 0), | |
| fx=scale, | |
| fy=scale, | |
| interpolation=cv2.INTER_CUBIC) | |
| imageToTest_padded, pad = padRightDownCorner( | |
| imageToTest, stride, padValue) | |
| im = np.transpose( | |
| np.float32(imageToTest_padded[:, :, :, np.newaxis]), | |
| (3, 2, 0, 1)) / 256 - 0.5 | |
| im = np.ascontiguousarray(im) | |
| data = torch.from_numpy(im).float() | |
| if torch.cuda.is_available(): | |
| data = data.to(self.device) | |
| # data = data.permute([2, 0, 1]).unsqueeze(0).float() | |
| with torch.no_grad(): | |
| output = self.model(data).cpu().numpy() | |
| # output = self.model(data).numpy()q | |
| # extract outputs, resize, and remove padding | |
| heatmap = np.transpose(np.squeeze(output), | |
| (1, 2, 0)) # output 1 is heatmaps | |
| heatmap = cv2.resize(heatmap, (0, 0), | |
| fx=stride, | |
| fy=stride, | |
| interpolation=cv2.INTER_CUBIC) | |
| heatmap = heatmap[:imageToTest_padded.shape[0] - | |
| pad[2], :imageToTest_padded.shape[1] - pad[3], :] | |
| heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), | |
| interpolation=cv2.INTER_CUBIC) | |
| heatmap_avg += heatmap / len(multiplier) | |
| all_peaks = [] | |
| for part in range(21): | |
| map_ori = heatmap_avg[:, :, part] | |
| one_heatmap = gaussian_filter(map_ori, sigma=3) | |
| binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8) | |
| # 全部小于阈值 | |
| if np.sum(binary) == 0: | |
| all_peaks.append([0, 0]) | |
| continue | |
| label_img, label_numbers = label(binary, | |
| return_num=True, | |
| connectivity=binary.ndim) | |
| max_index = np.argmax([ | |
| np.sum(map_ori[label_img == i]) | |
| for i in range(1, label_numbers + 1) | |
| ]) + 1 | |
| label_img[label_img != max_index] = 0 | |
| map_ori[label_img == 0] = 0 | |
| y, x = npmax(map_ori) | |
| all_peaks.append([x, y]) | |
| return np.array(all_peaks) | |
| class Body(object): | |
| def __init__(self, model_path, device='cuda'): | |
| self.model = bodypose_model() | |
| if torch.cuda.is_available(): | |
| self.model = self.model.to(device) | |
| model_dict = transfer(self.model, torch.load(model_path)) | |
| self.model.load_state_dict(model_dict) | |
| self.model.eval() | |
| self.device = device | |
| def __call__(self, oriImg): | |
| # scale_search = [0.5, 1.0, 1.5, 2.0] | |
| scale_search = [0.5] | |
| boxsize = 368 | |
| stride = 8 | |
| padValue = 128 | |
| thre1 = 0.1 | |
| thre2 = 0.05 | |
| multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] | |
| heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19)) | |
| paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) | |
| for m in range(len(multiplier)): | |
| scale = multiplier[m] | |
| imageToTest = cv2.resize(oriImg, (0, 0), | |
| fx=scale, | |
| fy=scale, | |
| interpolation=cv2.INTER_CUBIC) | |
| imageToTest_padded, pad = padRightDownCorner( | |
| imageToTest, stride, padValue) | |
| im = np.transpose( | |
| np.float32(imageToTest_padded[:, :, :, np.newaxis]), | |
| (3, 2, 0, 1)) / 256 - 0.5 | |
| im = np.ascontiguousarray(im) | |
| data = torch.from_numpy(im).float() | |
| if torch.cuda.is_available(): | |
| data = data.to(self.device) | |
| # data = data.permute([2, 0, 1]).unsqueeze(0).float() | |
| with torch.no_grad(): | |
| Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data) | |
| Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy() | |
| Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy() | |
| # extract outputs, resize, and remove padding | |
| # heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) | |
| # output 1 is heatmaps | |
| heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), | |
| (1, 2, 0)) # output 1 is heatmaps | |
| heatmap = cv2.resize(heatmap, (0, 0), | |
| fx=stride, | |
| fy=stride, | |
| interpolation=cv2.INTER_CUBIC) | |
| heatmap = heatmap[:imageToTest_padded.shape[0] - | |
| pad[2], :imageToTest_padded.shape[1] - pad[3], :] | |
| heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), | |
| interpolation=cv2.INTER_CUBIC) | |
| # paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs | |
| paf = np.transpose(np.squeeze(Mconv7_stage6_L1), | |
| (1, 2, 0)) # output 0 is PAFs | |
| paf = cv2.resize(paf, (0, 0), | |
| fx=stride, | |
| fy=stride, | |
| interpolation=cv2.INTER_CUBIC) | |
| paf = paf[:imageToTest_padded.shape[0] - | |
| pad[2], :imageToTest_padded.shape[1] - pad[3], :] | |
| paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), | |
| interpolation=cv2.INTER_CUBIC) | |
| heatmap_avg += heatmap_avg + heatmap / len(multiplier) | |
| paf_avg += +paf / len(multiplier) | |
| all_peaks = [] | |
| peak_counter = 0 | |
| for part in range(18): | |
| map_ori = heatmap_avg[:, :, part] | |
| one_heatmap = gaussian_filter(map_ori, sigma=3) | |
| map_left = np.zeros(one_heatmap.shape) | |
| map_left[1:, :] = one_heatmap[:-1, :] | |
| map_right = np.zeros(one_heatmap.shape) | |
| map_right[:-1, :] = one_heatmap[1:, :] | |
| map_up = np.zeros(one_heatmap.shape) | |
| map_up[:, 1:] = one_heatmap[:, :-1] | |
| map_down = np.zeros(one_heatmap.shape) | |
| map_down[:, :-1] = one_heatmap[:, 1:] | |
| peaks_binary = np.logical_and.reduce( | |
| (one_heatmap >= map_left, one_heatmap >= map_right, | |
| one_heatmap >= map_up, one_heatmap >= map_down, | |
| one_heatmap > thre1)) | |
| peaks = list( | |
| zip(np.nonzero(peaks_binary)[1], | |
| np.nonzero(peaks_binary)[0])) # note reverse | |
| peaks_with_score = [x + (map_ori[x[1], x[0]], ) for x in peaks] | |
| peak_id = range(peak_counter, peak_counter + len(peaks)) | |
| peaks_with_score_and_id = [ | |
| peaks_with_score[i] + (peak_id[i], ) | |
| for i in range(len(peak_id)) | |
| ] | |
| all_peaks.append(peaks_with_score_and_id) | |
| peak_counter += len(peaks) | |
| # find connection in the specified sequence, center 29 is in the position 15 | |
| limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], | |
| [9, 10], [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], | |
| [1, 15], [15, 17], [1, 16], [16, 18], [3, 17], [6, 18]] | |
| # the middle joints heatmap correpondence | |
| mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], | |
| [19, 20], [21, 22], [23, 24], [25, 26], [27, 28], [29, 30], | |
| [47, 48], [49, 50], [53, 54], [51, 52], [55, 56], [37, 38], | |
| [45, 46]] | |
| connection_all = [] | |
| special_k = [] | |
| mid_num = 10 | |
| for k in range(len(mapIdx)): | |
| score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]] | |
| candA = all_peaks[limbSeq[k][0] - 1] | |
| candB = all_peaks[limbSeq[k][1] - 1] | |
| nA = len(candA) | |
| nB = len(candB) | |
| indexA, indexB = limbSeq[k] | |
| if (nA != 0 and nB != 0): | |
| connection_candidate = [] | |
| for i in range(nA): | |
| for j in range(nB): | |
| vec = np.subtract(candB[j][:2], candA[i][:2]) | |
| norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) | |
| norm = max(0.001, norm) | |
| vec = np.divide(vec, norm) | |
| startend = list( | |
| zip( | |
| np.linspace(candA[i][0], | |
| candB[j][0], | |
| num=mid_num), | |
| np.linspace(candA[i][1], | |
| candB[j][1], | |
| num=mid_num))) | |
| vec_x = np.array([ | |
| score_mid[int(round(startend[ii][1])), | |
| int(round(startend[ii][0])), 0] | |
| for ii in range(len(startend)) | |
| ]) | |
| vec_y = np.array([ | |
| score_mid[int(round(startend[ii][1])), | |
| int(round(startend[ii][0])), 1] | |
| for ii in range(len(startend)) | |
| ]) | |
| score_midpts = np.multiply( | |
| vec_x, vec[0]) + np.multiply(vec_y, vec[1]) | |
| score_with_dist_prior = sum(score_midpts) / len( | |
| score_midpts) + min( | |
| 0.5 * oriImg.shape[0] / norm - 1, 0) | |
| criterion1 = len(np.nonzero( | |
| score_midpts > thre2)[0]) > 0.8 * len(score_midpts) | |
| criterion2 = score_with_dist_prior > 0 | |
| if criterion1 and criterion2: | |
| connection_candidate.append([ | |
| i, j, score_with_dist_prior, | |
| score_with_dist_prior + candA[i][2] + | |
| candB[j][2] | |
| ]) | |
| connection_candidate = sorted(connection_candidate, | |
| key=lambda x: x[2], | |
| reverse=True) | |
| connection = np.zeros((0, 5)) | |
| for c in range(len(connection_candidate)): | |
| i, j, s = connection_candidate[c][0:3] | |
| if (i not in connection[:, 3] | |
| and j not in connection[:, 4]): | |
| connection = np.vstack( | |
| [connection, [candA[i][3], candB[j][3], s, i, j]]) | |
| if (len(connection) >= min(nA, nB)): | |
| break | |
| connection_all.append(connection) | |
| else: | |
| special_k.append(k) | |
| connection_all.append([]) | |
| # last number in each row is the total parts number of that person | |
| # the second last number in each row is the score of the overall configuration | |
| subset = -1 * np.ones((0, 20)) | |
| candidate = np.array( | |
| [item for sublist in all_peaks for item in sublist]) | |
| for k in range(len(mapIdx)): | |
| if k not in special_k: | |
| partAs = connection_all[k][:, 0] | |
| partBs = connection_all[k][:, 1] | |
| indexA, indexB = np.array(limbSeq[k]) - 1 | |
| for i in range(len(connection_all[k])): # = 1:size(temp,1) | |
| found = 0 | |
| subset_idx = [-1, -1] | |
| for j in range(len(subset)): # 1:size(subset,1): | |
| if subset[j][indexA] == partAs[i] or subset[j][ | |
| indexB] == partBs[i]: | |
| subset_idx[found] = j | |
| found += 1 | |
| if found == 1: | |
| j = subset_idx[0] | |
| if subset[j][indexB] != partBs[i]: | |
| subset[j][indexB] = partBs[i] | |
| subset[j][-1] += 1 | |
| subset[j][-2] += candidate[ | |
| partBs[i].astype(int), | |
| 2] + connection_all[k][i][2] | |
| elif found == 2: # if found 2 and disjoint, merge them | |
| j1, j2 = subset_idx | |
| membership = ((subset[j1] >= 0).astype(int) + | |
| (subset[j2] >= 0).astype(int))[:-2] | |
| if len(np.nonzero(membership == 2)[0]) == 0: # merge | |
| subset[j1][:-2] += (subset[j2][:-2] + 1) | |
| subset[j1][-2:] += subset[j2][-2:] | |
| subset[j1][-2] += connection_all[k][i][2] | |
| subset = np.delete(subset, j2, 0) | |
| else: # as like found == 1 | |
| subset[j1][indexB] = partBs[i] | |
| subset[j1][-1] += 1 | |
| subset[j1][-2] += candidate[ | |
| partBs[i].astype(int), | |
| 2] + connection_all[k][i][2] | |
| # if find no partA in the subset, create a new subset | |
| elif not found and k < 17: | |
| row = -1 * np.ones(20) | |
| row[indexA] = partAs[i] | |
| row[indexB] = partBs[i] | |
| row[-1] = 2 | |
| row[-2] = sum( | |
| candidate[connection_all[k][i, :2].astype(int), | |
| 2]) + connection_all[k][i][2] | |
| subset = np.vstack([subset, row]) | |
| # delete some rows of subset which has few parts occur | |
| deleteIdx = [] | |
| for i in range(len(subset)): | |
| if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4: | |
| deleteIdx.append(i) | |
| subset = np.delete(subset, deleteIdx, axis=0) | |
| # subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts | |
| # candidate: x, y, score, id | |
| return candidate, subset | |
| class OpenposeAnnotator(BaseAnnotator, metaclass=ABCMeta): | |
| para_dict = {} | |
| def __init__(self, cfg, logger=None): | |
| super().__init__(cfg, logger=logger) | |
| with FS.get_from(cfg.BODY_MODEL_PATH, | |
| wait_finish=True) as body_model_path: | |
| self.body_estimation = Body(body_model_path, device='cpu') | |
| with FS.get_from(cfg.HAND_MODEL_PATH, | |
| wait_finish=True) as hand_model_path: | |
| self.hand_estimation = Hand(hand_model_path, device='cpu') | |
| self.use_hand = cfg.get('USE_HAND', False) | |
| def to(self, device): | |
| self.body_estimation.model = self.body_estimation.model.to(device) | |
| self.body_estimation.device = device | |
| self.hand_estimation.model = self.hand_estimation.model.to(device) | |
| self.hand_estimation.device = device | |
| return self | |
| def forward(self, image): | |
| if isinstance(image, Image.Image): | |
| image = np.array(image) | |
| elif isinstance(image, torch.Tensor): | |
| image = image.detach().cpu().numpy() | |
| elif isinstance(image, np.ndarray): | |
| image = image.copy() | |
| else: | |
| raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.' | |
| image = image[:, :, ::-1] | |
| candidate, subset = self.body_estimation(image) | |
| canvas = np.zeros_like(image) | |
| canvas = draw_bodypose(canvas, candidate, subset) | |
| if self.use_hand: | |
| hands_list = handDetect(candidate, subset, image) | |
| all_hand_peaks = [] | |
| for x, y, w, is_left in hands_list: | |
| peaks = self.hand_estimation(image[y:y + w, x:x + w, :]) | |
| peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], | |
| peaks[:, 0] + x) | |
| peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], | |
| peaks[:, 1] + y) | |
| all_hand_peaks.append(peaks) | |
| canvas = draw_handpose(canvas, all_hand_peaks) | |
| return canvas | |
| def get_config_template(): | |
| return dict_to_yaml('ANNOTATORS', | |
| __class__.__name__, | |
| OpenposeAnnotator.para_dict, | |
| set_name=True) | |