Spaces:
Runtime error
Runtime error
| from typing import Any, Optional | |
| from smolagents.tools import Tool | |
| class TranslationTool(Tool): | |
| """ | |
| Example: | |
| ```py | |
| translator = TranslationTool() | |
| translator("This is a super nice API!", src_lang="English", tgt_lang="French") | |
| ``` | |
| """ | |
| default_checkpoint = "facebook/nllb-200-distilled-600M" | |
| description = "This is a tool that translates text from a language to another." | |
| name = "translator" | |
| inputs = {'text': {'type': 'string', 'description': 'The text to translate'}, 'src_lang': {'type': 'string', 'description': "The language of the text to translate. Written in plain English, such as 'Romanian', or 'Albanian'"}, 'tgt_lang': {'type': 'string', 'description': "The language for the desired output language. Written in plain English, such as 'Romanian', or 'Albanian'"}} | |
| output_type = "string" | |
| def __init__(self, lang_to_code=LANGUAGE_CODES, pre_processor_class=AutoTokenizer, model_class=AutoModelForSeq2SeqLM): | |
| super().__init__() | |
| self.lang_to_code = lang_to_code | |
| self.pre_processor_class = pre_processor_class | |
| self.model_class = model_class | |
| # self.pre_processor = self.pre_processor_class.from_pretrained(self.default_checkpoint) | |
| # self.model = self.model_class.from_pretrained(self.default_checkpoint) | |
| # self.post_processor = self.pre_processor | |
| def encode(self, text, src_lang, tgt_lang): | |
| if src_lang not in self.lang_to_code: | |
| raise ValueError(f"{src_lang} is not a supported language.") | |
| if tgt_lang not in self.lang_to_code: | |
| raise ValueError(f"{tgt_lang} is not a supported language.") | |
| src_lang = self.lang_to_code[src_lang] | |
| tgt_lang = self.lang_to_code[tgt_lang] | |
| return self.pre_processor._build_translation_inputs( | |
| text, return_tensors="pt", src_lang=src_lang, tgt_lang=tgt_lang | |
| ) | |
| def forward(self, inputs): | |
| return self.model.generate(**inputs) | |
| def decode(self, outputs): | |
| return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=True) | |