Spaces:
Running
Running
Upload 23 files
Browse files- cisen/config/cisen_r0.9_fpn.yaml +76 -0
- cisen/engine/__init__.py +0 -0
- cisen/engine/__pycache__/__init__.cpython-38.pyc +0 -0
- cisen/engine/__pycache__/engine.cpython-38.pyc +0 -0
- cisen/engine/demo.py +0 -0
- cisen/engine/engine.py +0 -0
- cisen/model/__init__.py +354 -0
- cisen/model/__pycache__/__init__.cpython-38.pyc +0 -0
- cisen/model/__pycache__/clip.cpython-38.pyc +0 -0
- cisen/model/__pycache__/layers.cpython-38.pyc +0 -0
- cisen/model/__pycache__/segmenter.cpython-38.pyc +0 -0
- cisen/model/builder.py +25 -0
- cisen/model/clip.py +1207 -0
- cisen/model/layers.py +633 -0
- cisen/model/segmenter.py +2045 -0
- cisen/utils/__pycache__/config.cpython-38.pyc +0 -0
- cisen/utils/__pycache__/dataset.cpython-38.pyc +0 -0
- cisen/utils/bpe_simple_vocab_16e6.txt.gz +3 -0
- cisen/utils/config.py +157 -0
- cisen/utils/dataset.py +478 -0
- cisen/utils/hash.py +314 -0
- cisen/utils/misc.py +444 -0
- cisen/utils/simple_tokenizer.py +132 -0
cisen/config/cisen_r0.9_fpn.yaml
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
DATA:
|
| 2 |
+
dataset: classification
|
| 3 |
+
dataset_json_file: /data02/xy/dataEngine/json_data/LuojiaHOG(test)_.json
|
| 4 |
+
# dataset_json_file: /data02/xy/dataEngine/json_data/merged_output_combined_9w_resplit.json
|
| 5 |
+
# dataset_json_file: /data02/xy/dataEngine/json_data/merged_output_combined_9w_resplit.json
|
| 6 |
+
exp_name: classifi
|
| 7 |
+
ratio: 0
|
| 8 |
+
dataset_train_split: 0.6
|
| 9 |
+
dataset_query_split: 0.2
|
| 10 |
+
imgs_folder: /data02/xy/Clip-hash/datasets/image/
|
| 11 |
+
label_path: /data02/xy/Clip-hash/labels.txt
|
| 12 |
+
num_classes: 10
|
| 13 |
+
# num_classes: 131
|
| 14 |
+
TRAIN:
|
| 15 |
+
# Base Arch
|
| 16 |
+
# clip_pretrain: /data02/xy/Clip-hash/pretrain/RS5M_ViT-B-32.pt
|
| 17 |
+
clip_pretrain: ./cisen/pretrain/RS5M_ViT-B-32.pt
|
| 18 |
+
model_name: ViT-B-32
|
| 19 |
+
ckpt_path: /data02/xy/GeoRSCLIP/codebase/inference/pretrain/RS5M_ViT-B-32.pt
|
| 20 |
+
input_size: 224
|
| 21 |
+
word_len: 328
|
| 22 |
+
word_dim: 1024
|
| 23 |
+
vis_dim: 512
|
| 24 |
+
fpn_in: [ 512, 768, 768 ]
|
| 25 |
+
fpn_out: [ 768, 768, 768, 512 ]
|
| 26 |
+
sync_bn: True
|
| 27 |
+
# Decoder
|
| 28 |
+
num_layers: 3
|
| 29 |
+
num_head: 8
|
| 30 |
+
dim_ffn: 2048
|
| 31 |
+
dropout: 0.1
|
| 32 |
+
intermediate: False
|
| 33 |
+
# Training Setting
|
| 34 |
+
workers: 32 # data loader workers
|
| 35 |
+
workers_val: 16
|
| 36 |
+
epochs: 50
|
| 37 |
+
milestones: [50]
|
| 38 |
+
start_epoch: 0
|
| 39 |
+
batch_size: 256 # batch size for training
|
| 40 |
+
batch_size_val: 256 # batch size for validation during training, memory and speed tradeoff 11111
|
| 41 |
+
base_lr: 0.0001
|
| 42 |
+
min_lr: 0.00000001
|
| 43 |
+
lr_decay: 0.5
|
| 44 |
+
lr_multi: 0.1
|
| 45 |
+
weight_decay: 0.
|
| 46 |
+
max_norm: 0.
|
| 47 |
+
manual_seed: 0
|
| 48 |
+
print_freq: 1
|
| 49 |
+
lamda1: 0.5
|
| 50 |
+
lamda2: 0.5
|
| 51 |
+
beta1: 0.5
|
| 52 |
+
beta2: 0.5
|
| 53 |
+
eta: 0.2
|
| 54 |
+
warmup_epochs: 0
|
| 55 |
+
contrastive: [0.4, 0.3, 0.3]
|
| 56 |
+
# Resume & Save
|
| 57 |
+
|
| 58 |
+
output_folder: /data02/xy/Clip-hash/exp/
|
| 59 |
+
save_freq: 1
|
| 60 |
+
weight: # path to initial weight (default: none)
|
| 61 |
+
resume: False # path to latest checkpoint (default: none)
|
| 62 |
+
evaluate: True # evaluate on validation set, extra gpu memory needed and small batch_size_val is recommend
|
| 63 |
+
Distributed:
|
| 64 |
+
dist_url: tcp://localhost:3693
|
| 65 |
+
dist_backend: 'nccl'
|
| 66 |
+
multiprocessing_distributed: True
|
| 67 |
+
world_size: 1
|
| 68 |
+
rank: 0
|
| 69 |
+
TEST:
|
| 70 |
+
test_split: val-test
|
| 71 |
+
gpu : [0]
|
| 72 |
+
test_lmdb: /data02/xy/Clip-hash/datasets/lmdb/refcoco/val.lmdb
|
| 73 |
+
visualize: False
|
| 74 |
+
topk: 5
|
| 75 |
+
test_batch_size: 256 #1111111
|
| 76 |
+
val_batch_size: 1
|
cisen/engine/__init__.py
ADDED
|
File without changes
|
cisen/engine/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (133 Bytes). View file
|
|
|
cisen/engine/__pycache__/engine.cpython-38.pyc
ADDED
|
Binary file (7.95 kB). View file
|
|
|
cisen/engine/demo.py
ADDED
|
File without changes
|
cisen/engine/engine.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cisen/model/__init__.py
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .segmenter import CRIS, CISEN, Clip_hash_model, zh_clip, poi_clip, Clip_model, CISEN_vit, CISEN_rsvit, CISEN_new, CISEN_rsvit_classification, CISEN_lclip
|
| 2 |
+
from .segmenter import *
|
| 3 |
+
from loguru import logger
|
| 4 |
+
from transformers import AlignProcessor, AlignModel
|
| 5 |
+
# def build_segmenter(args):
|
| 6 |
+
# model = CRIS(args)
|
| 7 |
+
# backbone = []
|
| 8 |
+
# backbone_no_decay = []
|
| 9 |
+
# head = []
|
| 10 |
+
# for k, v in model.named_parameters():
|
| 11 |
+
# if k.startswith('backbone') and 'positional_embedding' not in k:
|
| 12 |
+
# backbone.append(v)
|
| 13 |
+
# elif 'positional_embedding' in k:
|
| 14 |
+
# backbone_no_decay.append(v)
|
| 15 |
+
# else:
|
| 16 |
+
# head.append(v)
|
| 17 |
+
# print('Backbone with decay: {}, Backbone without decay: {}, Head: {}'.format(
|
| 18 |
+
# len(backbone), len(backbone_no_decay), len(head)))
|
| 19 |
+
# param_list = [{
|
| 20 |
+
# 'params': backbone,
|
| 21 |
+
# 'initial_lr': args.lr_multi * args.base_lr
|
| 22 |
+
# }, {
|
| 23 |
+
# 'params': backbone_no_decay,
|
| 24 |
+
# 'initial_lr': args.lr_multi * args.base_lr,
|
| 25 |
+
# 'weight_decay': 0
|
| 26 |
+
# }, {
|
| 27 |
+
# 'params': head,
|
| 28 |
+
# 'initial_lr': args.base_lr
|
| 29 |
+
# }]
|
| 30 |
+
# return model, param_list
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def build_CISEN(args, stage):
|
| 35 |
+
model = CISEN_new(args)
|
| 36 |
+
backbone = []
|
| 37 |
+
head = []
|
| 38 |
+
ADP = []
|
| 39 |
+
ADP_t = []
|
| 40 |
+
fuse = []
|
| 41 |
+
name = []
|
| 42 |
+
for k, v in model.named_parameters():
|
| 43 |
+
if k.startswith('backbone') and 'backbone.positional_embedding' not in k:
|
| 44 |
+
# if k.startswith('backbone'):
|
| 45 |
+
v.requires_grad = False
|
| 46 |
+
backbone.append(v)
|
| 47 |
+
elif k.startswith('ADP'):
|
| 48 |
+
# v.requires_grad = False
|
| 49 |
+
ADP.append(v)
|
| 50 |
+
elif k.startswith('FPN'):
|
| 51 |
+
fuse.append(v)
|
| 52 |
+
elif k.startswith('gap'):
|
| 53 |
+
fuse.append(v)
|
| 54 |
+
elif k.startswith('ADP_t'):
|
| 55 |
+
ADP_t.append(v)
|
| 56 |
+
else:
|
| 57 |
+
head.append(v)
|
| 58 |
+
name.append(k)
|
| 59 |
+
# logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
| 60 |
+
# param_list = [{
|
| 61 |
+
# 'params': backbone,
|
| 62 |
+
# 'initial_lr': args.lr_multi * float(args.base_lr)
|
| 63 |
+
# }, {
|
| 64 |
+
# 'params': head,
|
| 65 |
+
# 'initial_lr': args.base_lr
|
| 66 |
+
# }, {
|
| 67 |
+
# 'params': proj,
|
| 68 |
+
# 'initial_lr': args.base_lr
|
| 69 |
+
# }]
|
| 70 |
+
if stage == '1st':
|
| 71 |
+
param_list = [{
|
| 72 |
+
'params': ADP,
|
| 73 |
+
'initial_lr': args.base_lr
|
| 74 |
+
},{
|
| 75 |
+
'params': head,
|
| 76 |
+
'initial_lr': args.base_lr
|
| 77 |
+
}]
|
| 78 |
+
elif stage == '2nd':
|
| 79 |
+
param_list = [{
|
| 80 |
+
'params': fuse,
|
| 81 |
+
'initial_lr': args.base_lr
|
| 82 |
+
}]
|
| 83 |
+
elif stage == '4th':
|
| 84 |
+
param_list = [{
|
| 85 |
+
'params': fuse,
|
| 86 |
+
'initial_lr': args.base_lr
|
| 87 |
+
}]
|
| 88 |
+
elif stage == '5th':
|
| 89 |
+
param_list = [{
|
| 90 |
+
# 'params': ADP,
|
| 91 |
+
# 'initial_lr': args.base_lr
|
| 92 |
+
# },{
|
| 93 |
+
# 'params': ADP_t,
|
| 94 |
+
# 'initial_lr': args.base_lr
|
| 95 |
+
# },{
|
| 96 |
+
'params': fuse,
|
| 97 |
+
'initial_lr': args.base_lr
|
| 98 |
+
}]
|
| 99 |
+
else:
|
| 100 |
+
print('stage should be either 1st or 2nd')
|
| 101 |
+
return model, param_list
|
| 102 |
+
|
| 103 |
+
def build_CISEN_lclip(args, stage):
|
| 104 |
+
model = CISEN_lclip(args)
|
| 105 |
+
backbone = []
|
| 106 |
+
head = []
|
| 107 |
+
ADP = []
|
| 108 |
+
ADP_t = []
|
| 109 |
+
fuse = []
|
| 110 |
+
name = []
|
| 111 |
+
for k, v in model.named_parameters():
|
| 112 |
+
# if k.startswith('backbone') and 'backbone.positional_embedding' not in k:
|
| 113 |
+
if k.startswith('backbone'):
|
| 114 |
+
v.requires_grad = False
|
| 115 |
+
backbone.append(v)
|
| 116 |
+
elif k.startswith('ADP'):
|
| 117 |
+
# v.requires_grad = False
|
| 118 |
+
ADP.append(v)
|
| 119 |
+
elif k.startswith('FPN'):
|
| 120 |
+
fuse.append(v)
|
| 121 |
+
elif k.startswith('gap'):
|
| 122 |
+
fuse.append(v)
|
| 123 |
+
elif k.startswith('ADP_t'):
|
| 124 |
+
ADP_t.append(v)
|
| 125 |
+
else:
|
| 126 |
+
head.append(v)
|
| 127 |
+
name.append(k)
|
| 128 |
+
# logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
| 129 |
+
# param_list = [{
|
| 130 |
+
# 'params': backbone,
|
| 131 |
+
# 'initial_lr': args.lr_multi * float(args.base_lr)
|
| 132 |
+
# }, {
|
| 133 |
+
# 'params': head,
|
| 134 |
+
# 'initial_lr': args.base_lr
|
| 135 |
+
# }, {
|
| 136 |
+
# 'params': proj,
|
| 137 |
+
# 'initial_lr': args.base_lr
|
| 138 |
+
# }]
|
| 139 |
+
if stage == '1st':
|
| 140 |
+
param_list = [{
|
| 141 |
+
'params': ADP,
|
| 142 |
+
'initial_lr': args.base_lr
|
| 143 |
+
},{
|
| 144 |
+
'params': head,
|
| 145 |
+
'initial_lr': args.base_lr
|
| 146 |
+
}]
|
| 147 |
+
elif stage == '2nd':
|
| 148 |
+
param_list = [{
|
| 149 |
+
'params': fuse,
|
| 150 |
+
'initial_lr': args.base_lr
|
| 151 |
+
}]
|
| 152 |
+
elif stage == '4th':
|
| 153 |
+
param_list = [{
|
| 154 |
+
'params': fuse,
|
| 155 |
+
'initial_lr': args.base_lr
|
| 156 |
+
}]
|
| 157 |
+
elif stage == '5th':
|
| 158 |
+
param_list = [{
|
| 159 |
+
# 'params': ADP,
|
| 160 |
+
# 'initial_lr': args.base_lr
|
| 161 |
+
# },{
|
| 162 |
+
# 'params': ADP_t,
|
| 163 |
+
# 'initial_lr': args.base_lr
|
| 164 |
+
# },{
|
| 165 |
+
'params': fuse,
|
| 166 |
+
'initial_lr': args.base_lr
|
| 167 |
+
}]
|
| 168 |
+
else:
|
| 169 |
+
print('stage should be either 1st or 2nd')
|
| 170 |
+
return model, param_list
|
| 171 |
+
|
| 172 |
+
def build_CISEN_vit(args, stage):
|
| 173 |
+
model = CISEN_rsvit(args)
|
| 174 |
+
backbone = []
|
| 175 |
+
head = []
|
| 176 |
+
ADP = []
|
| 177 |
+
ADP_t = []
|
| 178 |
+
fuse = []
|
| 179 |
+
name = []
|
| 180 |
+
for k, v in model.named_parameters():
|
| 181 |
+
# if k.startswith('backbone') and 'backbone.positional_embedding' not in k:
|
| 182 |
+
if k.startswith('backbone'):
|
| 183 |
+
v.requires_grad = False
|
| 184 |
+
backbone.append(v)
|
| 185 |
+
elif k.startswith('ADP'):
|
| 186 |
+
v.requires_grad = False
|
| 187 |
+
ADP.append(v)
|
| 188 |
+
elif k.startswith('FPN'):
|
| 189 |
+
# v.requires_grad = False
|
| 190 |
+
fuse.append(v)
|
| 191 |
+
elif k.startswith('ms_adaptor'):
|
| 192 |
+
# v.requires_grad = False
|
| 193 |
+
fuse.append(v)
|
| 194 |
+
else:
|
| 195 |
+
head.append(v)
|
| 196 |
+
name.append(k)
|
| 197 |
+
# logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
| 198 |
+
# param_list = [{
|
| 199 |
+
# 'params': backbone,
|
| 200 |
+
# 'initial_lr': args.lr_multi * float(args.base_lr)
|
| 201 |
+
# }, {
|
| 202 |
+
# 'params': head,
|
| 203 |
+
# 'initial_lr': args.base_lr
|
| 204 |
+
# }, {
|
| 205 |
+
# 'params': proj,
|
| 206 |
+
# 'initial_lr': args.base_lr
|
| 207 |
+
# }]
|
| 208 |
+
if stage == '1st':
|
| 209 |
+
param_list = [{
|
| 210 |
+
'params': ADP,
|
| 211 |
+
'initial_lr': args.base_lr
|
| 212 |
+
},{
|
| 213 |
+
'params': head,
|
| 214 |
+
'initial_lr': args.base_lr
|
| 215 |
+
}]
|
| 216 |
+
elif stage == '2nd':
|
| 217 |
+
param_list = [{
|
| 218 |
+
'params': fuse,
|
| 219 |
+
'initial_lr': args.base_lr
|
| 220 |
+
}]
|
| 221 |
+
elif stage == '4th':
|
| 222 |
+
param_list = [{
|
| 223 |
+
'params': fuse,
|
| 224 |
+
'initial_lr': args.base_lr
|
| 225 |
+
}]
|
| 226 |
+
elif stage == '5th':
|
| 227 |
+
param_list = [{
|
| 228 |
+
# 'params': ADP,
|
| 229 |
+
# 'initial_lr': args.base_lr
|
| 230 |
+
# },{
|
| 231 |
+
# 'params': ADP_t,
|
| 232 |
+
# 'initial_lr': args.base_lr
|
| 233 |
+
# },{
|
| 234 |
+
'params': fuse,
|
| 235 |
+
'initial_lr': args.base_lr
|
| 236 |
+
}]
|
| 237 |
+
else:
|
| 238 |
+
print('stage should be either 1st or 2nd')
|
| 239 |
+
return model, param_list
|
| 240 |
+
|
| 241 |
+
def build_CISEN_vit_classification(args, stage):
|
| 242 |
+
model = CISEN_rsvit_classification(args)
|
| 243 |
+
|
| 244 |
+
# logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
| 245 |
+
# param_list = [{
|
| 246 |
+
# 'params': backbone,
|
| 247 |
+
# 'initial_lr': args.lr_multi * float(args.base_lr)
|
| 248 |
+
# }, {
|
| 249 |
+
# 'params': head,
|
| 250 |
+
# 'initial_lr': args.base_lr
|
| 251 |
+
# }, {
|
| 252 |
+
# 'params': proj,
|
| 253 |
+
# 'initial_lr': args.base_lr
|
| 254 |
+
# }]
|
| 255 |
+
|
| 256 |
+
return model
|
| 257 |
+
|
| 258 |
+
def build_segmenter(args):
|
| 259 |
+
model = CRIS(args)
|
| 260 |
+
backbone = []
|
| 261 |
+
head = []
|
| 262 |
+
for k, v in model.named_parameters():
|
| 263 |
+
if k.startswith('backbone') and 'positional_embedding' not in k:
|
| 264 |
+
backbone.append(v)
|
| 265 |
+
elif k.startswith('Label_encoder') and "token_embedding" not in k:
|
| 266 |
+
v.requires_grad = False
|
| 267 |
+
else:
|
| 268 |
+
head.append(v)
|
| 269 |
+
|
| 270 |
+
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
| 271 |
+
param_list = [{
|
| 272 |
+
'params': backbone,
|
| 273 |
+
'initial_lr': args.lr_multi * float(args.base_lr)
|
| 274 |
+
}, {
|
| 275 |
+
'params': head,
|
| 276 |
+
'initial_lr': args.base_lr
|
| 277 |
+
}]
|
| 278 |
+
return model, param_list
|
| 279 |
+
|
| 280 |
+
def build_hash(args):
|
| 281 |
+
model = Clip_hash_model(args)
|
| 282 |
+
backbone = []
|
| 283 |
+
head = []
|
| 284 |
+
for k, v in model.named_parameters():
|
| 285 |
+
if k.startswith('backbone') and 'positional_embedding' not in k:
|
| 286 |
+
backbone.append(v)
|
| 287 |
+
else:
|
| 288 |
+
head.append(v)
|
| 289 |
+
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
| 290 |
+
param_list = [{
|
| 291 |
+
'params': backbone,
|
| 292 |
+
'initial_lr': args.lr_multi * args.base_lr
|
| 293 |
+
}, {
|
| 294 |
+
'params': head,
|
| 295 |
+
'initial_lr': args.base_lr
|
| 296 |
+
}]
|
| 297 |
+
return model, param_list
|
| 298 |
+
|
| 299 |
+
def build_zh_segmenter(args):
|
| 300 |
+
model = zh_clip(args)
|
| 301 |
+
backbone = []
|
| 302 |
+
head = []
|
| 303 |
+
for k, v in model.named_parameters():
|
| 304 |
+
if k.startswith('backbone') and 'positional_embedding' not in k:
|
| 305 |
+
backbone.append(v)
|
| 306 |
+
else:
|
| 307 |
+
head.append(v)
|
| 308 |
+
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
| 309 |
+
param_list = [{
|
| 310 |
+
'params': backbone,
|
| 311 |
+
'initial_lr': args.lr_multi * args.base_lr
|
| 312 |
+
}, {
|
| 313 |
+
'params': head,
|
| 314 |
+
'initial_lr': args.base_lr
|
| 315 |
+
}]
|
| 316 |
+
return model, param_list
|
| 317 |
+
|
| 318 |
+
def build_poi_segmenter(args):
|
| 319 |
+
model = poi_clip(args)
|
| 320 |
+
backbone = []
|
| 321 |
+
head = []
|
| 322 |
+
for k, v in model.named_parameters():
|
| 323 |
+
if k.startswith('backbone') and 'positional_embedding' not in k:
|
| 324 |
+
backbone.append(v)
|
| 325 |
+
else:
|
| 326 |
+
head.append(v)
|
| 327 |
+
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
| 328 |
+
param_list = [{
|
| 329 |
+
'params': backbone,
|
| 330 |
+
'initial_lr': args.lr_multi * args.base_lr
|
| 331 |
+
}, {
|
| 332 |
+
'params': head,
|
| 333 |
+
'initial_lr': args.base_lr
|
| 334 |
+
}]
|
| 335 |
+
return model, param_list
|
| 336 |
+
|
| 337 |
+
def build_clip(args):
|
| 338 |
+
model = Clip_model(args)
|
| 339 |
+
backbone = []
|
| 340 |
+
head = []
|
| 341 |
+
for k, v in model.named_parameters():
|
| 342 |
+
if k.startswith('backbone') and 'positional_embedding' not in k:
|
| 343 |
+
backbone.append(v)
|
| 344 |
+
else:
|
| 345 |
+
head.append(v)
|
| 346 |
+
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
| 347 |
+
param_list = [{
|
| 348 |
+
'params': backbone,
|
| 349 |
+
'initial_lr': args.lr_multi * args.base_lr
|
| 350 |
+
}, {
|
| 351 |
+
'params': head,
|
| 352 |
+
'initial_lr': args.base_lr
|
| 353 |
+
}]
|
| 354 |
+
return model, param_list
|
cisen/model/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (695 Bytes). View file
|
|
|
cisen/model/__pycache__/clip.cpython-38.pyc
ADDED
|
Binary file (16.7 kB). View file
|
|
|
cisen/model/__pycache__/layers.cpython-38.pyc
ADDED
|
Binary file (9.07 kB). View file
|
|
|
cisen/model/__pycache__/segmenter.cpython-38.pyc
ADDED
|
Binary file (1.66 kB). View file
|
|
|
cisen/model/builder.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
# Copyright (c) 2022, Huawei Technologies Co., Ltd. All rights reserved.
|
| 5 |
+
#
|
| 6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
# you may not use this file except in compliance with the License.
|
| 8 |
+
# You may obtain a copy of the License at
|
| 9 |
+
#
|
| 10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
#
|
| 12 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
# See the License for the specific language governing permissions and
|
| 16 |
+
# limitations under the License.
|
| 17 |
+
from mmcv import Registry
|
| 18 |
+
from mmcv import build_from_cfg
|
| 19 |
+
|
| 20 |
+
MODELS = Registry('model')
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def build_model(config):
|
| 24 |
+
|
| 25 |
+
return build_from_cfg(config, MODELS)
|
cisen/model/clip.py
ADDED
|
@@ -0,0 +1,1207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import OrderedDict
|
| 2 |
+
from typing import Tuple, Union
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from torch import nn
|
| 8 |
+
from ..utils.dataset import tokenize
|
| 9 |
+
from ..utils.simple_tokenizer import SimpleTokenizer as _Tokenizer
|
| 10 |
+
_tokenizer = _Tokenizer()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class Bottleneck(nn.Module):
|
| 14 |
+
expansion = 4
|
| 15 |
+
|
| 16 |
+
def __init__(self, inplanes, planes, stride=1):
|
| 17 |
+
super().__init__()
|
| 18 |
+
|
| 19 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
| 20 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
| 21 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 22 |
+
|
| 23 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
| 24 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 25 |
+
|
| 26 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
| 27 |
+
|
| 28 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
| 29 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
| 30 |
+
|
| 31 |
+
self.relu = nn.ReLU(inplace=True)
|
| 32 |
+
self.downsample = None
|
| 33 |
+
self.stride = stride
|
| 34 |
+
|
| 35 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
| 36 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
| 37 |
+
self.downsample = nn.Sequential(
|
| 38 |
+
OrderedDict([("-1", nn.AvgPool2d(stride)),
|
| 39 |
+
("0",
|
| 40 |
+
nn.Conv2d(inplanes,
|
| 41 |
+
planes * self.expansion,
|
| 42 |
+
1,
|
| 43 |
+
stride=1,
|
| 44 |
+
bias=False)),
|
| 45 |
+
("1", nn.BatchNorm2d(planes * self.expansion))]))
|
| 46 |
+
|
| 47 |
+
def forward(self, x: torch.Tensor):
|
| 48 |
+
identity = x
|
| 49 |
+
|
| 50 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
| 51 |
+
out = self.relu(self.bn2(self.conv2(out)))
|
| 52 |
+
out = self.avgpool(out)
|
| 53 |
+
out = self.bn3(self.conv3(out))
|
| 54 |
+
|
| 55 |
+
if self.downsample is not None:
|
| 56 |
+
identity = self.downsample(x)
|
| 57 |
+
|
| 58 |
+
out += identity
|
| 59 |
+
out = self.relu(out)
|
| 60 |
+
return out
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
"""
|
| 64 |
+
attenpool used in CRIS (output: C1/C2/C3 3 deiffent feature maps)
|
| 65 |
+
"""
|
| 66 |
+
class ModifiedAttentionPool2d(nn.Module):
|
| 67 |
+
def __init__(self,
|
| 68 |
+
spacial_dim: int,
|
| 69 |
+
embed_dim: int,
|
| 70 |
+
num_heads: int,
|
| 71 |
+
output_dim: int = None):
|
| 72 |
+
super().__init__()
|
| 73 |
+
self.spacial_dim = spacial_dim
|
| 74 |
+
self.positional_embedding = nn.Parameter(
|
| 75 |
+
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5)
|
| 76 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
| 77 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
| 78 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
| 79 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
| 80 |
+
self.num_heads = num_heads
|
| 81 |
+
# residual
|
| 82 |
+
self.connect = nn.Sequential(
|
| 83 |
+
nn.Conv2d(embed_dim, output_dim, 1, stride=1, bias=False),
|
| 84 |
+
nn.BatchNorm2d(output_dim))
|
| 85 |
+
|
| 86 |
+
def resize_pos_embed(self, pos_embed, input_shpae):
|
| 87 |
+
"""Resize pos_embed weights.
|
| 88 |
+
Resize pos_embed using bicubic interpolate method.
|
| 89 |
+
Args:
|
| 90 |
+
pos_embed (torch.Tensor): Position embedding weights.
|
| 91 |
+
input_shpae (tuple): Tuple for (downsampled input image height,
|
| 92 |
+
downsampled input image width).
|
| 93 |
+
pos_shape (tuple): The resolution of downsampled origin training
|
| 94 |
+
image.
|
| 95 |
+
mode (str): Algorithm used for upsampling:
|
| 96 |
+
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
|
| 97 |
+
``'trilinear'``. Default: ``'nearest'``
|
| 98 |
+
Return:
|
| 99 |
+
torch.Tensor: The resized pos_embed of shape [B, C, L_new]
|
| 100 |
+
"""
|
| 101 |
+
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
|
| 102 |
+
pos_h = pos_w = self.spacial_dim
|
| 103 |
+
cls_token_weight = pos_embed[:, 0]
|
| 104 |
+
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
|
| 105 |
+
pos_embed_weight = pos_embed_weight.reshape(
|
| 106 |
+
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
|
| 107 |
+
pos_embed_weight = F.interpolate(pos_embed_weight,
|
| 108 |
+
size=input_shpae,
|
| 109 |
+
align_corners=False,
|
| 110 |
+
mode='bicubic')
|
| 111 |
+
cls_token_weight = cls_token_weight.unsqueeze(1)
|
| 112 |
+
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
|
| 113 |
+
# pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
|
| 114 |
+
return pos_embed_weight.transpose(-2, -1)
|
| 115 |
+
|
| 116 |
+
def forward(self, x):
|
| 117 |
+
B, C, H, W = x.size()
|
| 118 |
+
res = self.connect(x)
|
| 119 |
+
x = x.reshape(B, C, -1) # NC(HW)
|
| 120 |
+
# x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(1+HW)
|
| 121 |
+
pos_embed = self.positional_embedding.unsqueeze(0)
|
| 122 |
+
pos_embed = self.resize_pos_embed(pos_embed, (H, W)) # NC(HW)
|
| 123 |
+
x = x + pos_embed.to(x.dtype) # NC(HW)
|
| 124 |
+
x = x.permute(2, 0, 1) # (HW)NC
|
| 125 |
+
x, _ = F.multi_head_attention_forward(
|
| 126 |
+
query=x,
|
| 127 |
+
key=x,
|
| 128 |
+
value=x,
|
| 129 |
+
embed_dim_to_check=x.shape[-1],
|
| 130 |
+
num_heads=self.num_heads,
|
| 131 |
+
q_proj_weight=self.q_proj.weight,
|
| 132 |
+
k_proj_weight=self.k_proj.weight,
|
| 133 |
+
v_proj_weight=self.v_proj.weight,
|
| 134 |
+
in_proj_weight=None,
|
| 135 |
+
in_proj_bias=torch.cat(
|
| 136 |
+
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
| 137 |
+
bias_k=None,
|
| 138 |
+
bias_v=None,
|
| 139 |
+
add_zero_attn=False,
|
| 140 |
+
dropout_p=0,
|
| 141 |
+
out_proj_weight=self.c_proj.weight,
|
| 142 |
+
out_proj_bias=self.c_proj.bias,
|
| 143 |
+
use_separate_proj_weight=True,
|
| 144 |
+
training=self.training,
|
| 145 |
+
need_weights=False)
|
| 146 |
+
xt = x[0]
|
| 147 |
+
x = x.permute(1, 2, 0).reshape(B, -1, H, W)
|
| 148 |
+
x = x + res
|
| 149 |
+
x = F.relu(x, True)
|
| 150 |
+
|
| 151 |
+
return x, xt
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
"""
|
| 155 |
+
attenpool used in Clip (output: a tensor (b, dim) image encoding)
|
| 156 |
+
"""
|
| 157 |
+
class AttentionPool2d(nn.Module):
|
| 158 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
| 159 |
+
super().__init__()
|
| 160 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
| 161 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
| 162 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
| 163 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
| 164 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
| 165 |
+
self.num_heads = num_heads
|
| 166 |
+
|
| 167 |
+
def forward(self, x):
|
| 168 |
+
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
| 169 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
| 170 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
| 171 |
+
x, _ = F.multi_head_attention_forward(
|
| 172 |
+
query=x[:1], key=x, value=x,
|
| 173 |
+
embed_dim_to_check=x.shape[-1],
|
| 174 |
+
num_heads=self.num_heads,
|
| 175 |
+
q_proj_weight=self.q_proj.weight,
|
| 176 |
+
k_proj_weight=self.k_proj.weight,
|
| 177 |
+
v_proj_weight=self.v_proj.weight,
|
| 178 |
+
in_proj_weight=None,
|
| 179 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
| 180 |
+
bias_k=None,
|
| 181 |
+
bias_v=None,
|
| 182 |
+
add_zero_attn=False,
|
| 183 |
+
dropout_p=0,
|
| 184 |
+
out_proj_weight=self.c_proj.weight,
|
| 185 |
+
out_proj_bias=self.c_proj.bias,
|
| 186 |
+
use_separate_proj_weight=True,
|
| 187 |
+
training=self.training,
|
| 188 |
+
need_weights=False
|
| 189 |
+
)
|
| 190 |
+
return x.squeeze(0)
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
class ModifiedResNet(nn.Module):
|
| 194 |
+
"""
|
| 195 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
| 196 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
| 197 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
| 198 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
| 199 |
+
"""
|
| 200 |
+
def __init__(self,
|
| 201 |
+
layers,
|
| 202 |
+
output_dim,
|
| 203 |
+
heads,
|
| 204 |
+
input_resolution=224,
|
| 205 |
+
width=64):
|
| 206 |
+
super().__init__()
|
| 207 |
+
self.output_dim = output_dim
|
| 208 |
+
self.input_resolution = input_resolution
|
| 209 |
+
|
| 210 |
+
# the 3-layer stem
|
| 211 |
+
self.conv1 = nn.Conv2d(3,
|
| 212 |
+
width // 2,
|
| 213 |
+
kernel_size=3,
|
| 214 |
+
stride=2,
|
| 215 |
+
padding=1,
|
| 216 |
+
bias=False)
|
| 217 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
| 218 |
+
self.conv2 = nn.Conv2d(width // 2,
|
| 219 |
+
width // 2,
|
| 220 |
+
kernel_size=3,
|
| 221 |
+
padding=1,
|
| 222 |
+
bias=False)
|
| 223 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
| 224 |
+
self.conv3 = nn.Conv2d(width // 2,
|
| 225 |
+
width,
|
| 226 |
+
kernel_size=3,
|
| 227 |
+
padding=1,
|
| 228 |
+
bias=False)
|
| 229 |
+
self.bn3 = nn.BatchNorm2d(width)
|
| 230 |
+
self.avgpool = nn.AvgPool2d(2)
|
| 231 |
+
self.relu = nn.ReLU(inplace=True)
|
| 232 |
+
|
| 233 |
+
# residual layers
|
| 234 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
| 235 |
+
self.layer1 = self._make_layer(width, layers[0])
|
| 236 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
| 237 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
| 238 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
| 239 |
+
|
| 240 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
| 241 |
+
|
| 242 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim,
|
| 243 |
+
heads, output_dim)
|
| 244 |
+
# self.modifiedattnpool = ModifiedAttentionPool2d(input_resolution // 32, embed_dim,
|
| 245 |
+
# heads, output_dim)
|
| 246 |
+
|
| 247 |
+
def _make_layer(self, planes, blocks, stride=1):
|
| 248 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
| 249 |
+
|
| 250 |
+
self._inplanes = planes * Bottleneck.expansion
|
| 251 |
+
for _ in range(1, blocks):
|
| 252 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
| 253 |
+
|
| 254 |
+
return nn.Sequential(*layers)
|
| 255 |
+
|
| 256 |
+
def forward(self, x):
|
| 257 |
+
def stem(x):
|
| 258 |
+
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2),
|
| 259 |
+
(self.conv3, self.bn3)]:
|
| 260 |
+
|
| 261 |
+
x = self.relu(bn(conv(x)))
|
| 262 |
+
|
| 263 |
+
x = self.avgpool(x)
|
| 264 |
+
return x
|
| 265 |
+
|
| 266 |
+
x = x.type(self.conv1.weight.dtype)
|
| 267 |
+
x = stem(x)
|
| 268 |
+
|
| 269 |
+
x = self.layer1(x)
|
| 270 |
+
|
| 271 |
+
x2 = self.layer2(x)
|
| 272 |
+
|
| 273 |
+
x3 = self.layer3(x2)
|
| 274 |
+
x4 = self.layer4(x3)
|
| 275 |
+
x5 = self.attnpool(x4)
|
| 276 |
+
# x4 = self.modifiedattnpool(x4)
|
| 277 |
+
|
| 278 |
+
return (x2, x3, x4), x5
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
class LayerNorm(nn.LayerNorm):
|
| 282 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
| 283 |
+
def forward(self, x: torch.Tensor):
|
| 284 |
+
orig_type = x.dtype
|
| 285 |
+
ret = super().forward(x.type(torch.float32))
|
| 286 |
+
return ret.type(orig_type)
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class QuickGELU(nn.Module):
|
| 290 |
+
def forward(self, x: torch.Tensor):
|
| 291 |
+
return x * torch.sigmoid(1.702 * x)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
class ResidualAttentionBlock(nn.Module):
|
| 295 |
+
def __init__(self,
|
| 296 |
+
d_model: int,
|
| 297 |
+
n_head: int,
|
| 298 |
+
attn_mask: torch.Tensor = None):
|
| 299 |
+
super().__init__()
|
| 300 |
+
# print(n_head)
|
| 301 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
| 302 |
+
self.ln_1 = LayerNorm(d_model)
|
| 303 |
+
self.mlp = nn.Sequential(
|
| 304 |
+
OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)),
|
| 305 |
+
("gelu", QuickGELU()),
|
| 306 |
+
("c_proj", nn.Linear(d_model * 4, d_model))]))
|
| 307 |
+
self.ln_2 = LayerNorm(d_model)
|
| 308 |
+
self.attn_mask = attn_mask
|
| 309 |
+
|
| 310 |
+
def attention(self, x: torch.Tensor):
|
| 311 |
+
self.attn_mask = self.attn_mask.to(
|
| 312 |
+
dtype=x.dtype,
|
| 313 |
+
device=x.device) if self.attn_mask is not None else None
|
| 314 |
+
res = self.attn(x, x, x, need_weights=False,
|
| 315 |
+
attn_mask=self.attn_mask)[0]
|
| 316 |
+
# print(res)
|
| 317 |
+
return res
|
| 318 |
+
|
| 319 |
+
def forward(self, x: torch.Tensor):
|
| 320 |
+
# a = self.attention(self.ln_1(x))
|
| 321 |
+
x = x + self.attention(self.ln_1(x))
|
| 322 |
+
|
| 323 |
+
x = x + self.mlp(self.ln_2(x))
|
| 324 |
+
return x
|
| 325 |
+
|
| 326 |
+
class Transformer(nn.Module):
|
| 327 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
| 328 |
+
super().__init__()
|
| 329 |
+
self.width = width
|
| 330 |
+
self.layers = layers
|
| 331 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
| 332 |
+
|
| 333 |
+
def forward(self, x: torch.Tensor):
|
| 334 |
+
return self.resblocks(x)
|
| 335 |
+
|
| 336 |
+
class ViTTransformer(nn.Module):
|
| 337 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
| 338 |
+
super().__init__()
|
| 339 |
+
self.width = width
|
| 340 |
+
self.layers = layers
|
| 341 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
| 342 |
+
|
| 343 |
+
def forward(self, x: torch.Tensor):
|
| 344 |
+
outputs = []
|
| 345 |
+
i = 1
|
| 346 |
+
for block in self.resblocks:
|
| 347 |
+
x = block(x)
|
| 348 |
+
if i > 7:
|
| 349 |
+
outputs.append(x)
|
| 350 |
+
i = i + 1
|
| 351 |
+
return outputs
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
class VisionTransformer(nn.Module):
|
| 355 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int,
|
| 356 |
+
layers: int, heads: int, output_dim: int):
|
| 357 |
+
super().__init__()
|
| 358 |
+
self.input_resolution = input_resolution
|
| 359 |
+
self.output_dim = output_dim
|
| 360 |
+
self.conv1 = nn.Conv2d(in_channels=3,
|
| 361 |
+
out_channels=width,
|
| 362 |
+
kernel_size=patch_size,
|
| 363 |
+
stride=patch_size,
|
| 364 |
+
bias=False)
|
| 365 |
+
|
| 366 |
+
scale = width ** -0.5
|
| 367 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
| 368 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn(
|
| 369 |
+
(input_resolution // patch_size) ** 2 + 1, width))
|
| 370 |
+
self.ln_pre = LayerNorm(width)
|
| 371 |
+
|
| 372 |
+
self.transformer = ViTTransformer(width, layers, heads)
|
| 373 |
+
|
| 374 |
+
self.ln_post = LayerNorm(width)
|
| 375 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
| 376 |
+
|
| 377 |
+
def forward(self, x: torch.Tensor):
|
| 378 |
+
# input: batch, 3, 224, 224
|
| 379 |
+
|
| 380 |
+
# batch, 1024, 16, 16
|
| 381 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
| 382 |
+
# batch, 1024, 256
|
| 383 |
+
x = x.reshape(x.shape[0], x.shape[1],
|
| 384 |
+
-1) # shape = [*, width, grid ** 2]
|
| 385 |
+
# batch, 256, 1024
|
| 386 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
| 387 |
+
# batch, 257, 1024
|
| 388 |
+
x = torch.cat([
|
| 389 |
+
self.class_embedding.to(x.dtype) + torch.zeros(
|
| 390 |
+
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
|
| 391 |
+
],
|
| 392 |
+
dim=1) # shape = [*, grid ** 2 + 1, width]
|
| 393 |
+
|
| 394 |
+
x = x + self.positional_embedding.to(x.dtype)
|
| 395 |
+
|
| 396 |
+
x = self.ln_pre(x)
|
| 397 |
+
# 257, batch, 1024
|
| 398 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 399 |
+
|
| 400 |
+
out = self.transformer(x)
|
| 401 |
+
# batch, 257, 1024
|
| 402 |
+
x1, x2 ,x3, x4 = out[0], out[1], out[2], out[3]
|
| 403 |
+
x1 = x1.permute(1, 0, 2)
|
| 404 |
+
x2 = x2.permute(1, 0, 2)
|
| 405 |
+
x3 = x3.permute(1, 0, 2)
|
| 406 |
+
x4 = x4.permute(1, 0, 2) # LND -> NLD
|
| 407 |
+
|
| 408 |
+
# 用于分类
|
| 409 |
+
x = self.ln_post(x4[:, 0, :])
|
| 410 |
+
#feature
|
| 411 |
+
# x_f = self.ln_post(x[:, 1:, :])
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
if self.proj is not None:
|
| 415 |
+
x = x @ self.proj
|
| 416 |
+
|
| 417 |
+
return (x1[:, 1:, :], x2[:, 1:, :], x3[:, 1:, :], x4[:, 1:, :]), x
|
| 418 |
+
|
| 419 |
+
class ModifiedVisionTransformer(nn.Module):
|
| 420 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int,
|
| 421 |
+
layers: int, heads: int, output_dim: int):
|
| 422 |
+
super().__init__()
|
| 423 |
+
self.input_resolution = input_resolution
|
| 424 |
+
self.output_dim = output_dim
|
| 425 |
+
self.conv1 = nn.Conv2d(in_channels=3,
|
| 426 |
+
out_channels=width,
|
| 427 |
+
kernel_size=patch_size,
|
| 428 |
+
stride=patch_size,
|
| 429 |
+
bias=False)
|
| 430 |
+
|
| 431 |
+
self.conv2 = nn.Conv2d(in_channels=3,
|
| 432 |
+
out_channels=width // 2,
|
| 433 |
+
kernel_size=patch_size // 2,
|
| 434 |
+
stride=patch_size // 2,
|
| 435 |
+
bias=False)
|
| 436 |
+
|
| 437 |
+
self.conv3 = nn.Conv2d(in_channels=3,
|
| 438 |
+
out_channels=width,
|
| 439 |
+
kernel_size=patch_size * 2,
|
| 440 |
+
stride=patch_size * 2,
|
| 441 |
+
bias=False)
|
| 442 |
+
self.conv_layers = [self.conv1, self.conv2]
|
| 443 |
+
scale = width**-0.5
|
| 444 |
+
|
| 445 |
+
self.class_embedding1 = nn.Parameter(scale * torch.randn(width))
|
| 446 |
+
self.class_embedding2 = nn.Parameter(scale * torch.randn(width // 2))
|
| 447 |
+
self.cls_layers = [self.class_embedding1, self.class_embedding2]
|
| 448 |
+
|
| 449 |
+
self.positional_embedding1 = nn.Parameter(scale * torch.randn(
|
| 450 |
+
(input_resolution // patch_size)**2 + 1, width))
|
| 451 |
+
self.positional_embedding2 = nn.Parameter(scale * torch.randn(
|
| 452 |
+
(input_resolution // (patch_size // 2)) ** 2 + 1, width // 2))
|
| 453 |
+
self.pos_layers = [self.positional_embedding1, self.positional_embedding2]
|
| 454 |
+
|
| 455 |
+
self.ln_pre1 = LayerNorm(width)
|
| 456 |
+
self.ln_pre2 = LayerNorm(width // 2)
|
| 457 |
+
self.pre_layers = [self.ln_pre1, self.ln_pre2]
|
| 458 |
+
|
| 459 |
+
self.transformer1 = Transformer(width, layers, heads)
|
| 460 |
+
self.transformer2 = Transformer(width // 2, layers, heads)
|
| 461 |
+
self.tran_layers = [self.transformer1, self.transformer2]
|
| 462 |
+
|
| 463 |
+
self.ln_post1 = LayerNorm(width)
|
| 464 |
+
self.ln_post2 = LayerNorm(width // 2)
|
| 465 |
+
self.post_layers = [self.ln_post1, self.ln_post2]
|
| 466 |
+
|
| 467 |
+
self.proj1 = nn.Parameter(scale * torch.randn(width, output_dim * 2))
|
| 468 |
+
self.proj2 = nn.Parameter(scale * torch.randn(width // 2, output_dim))
|
| 469 |
+
self.proj_layers = [self.proj1, self.proj2]
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
def forward(self, x: torch.Tensor):
|
| 473 |
+
# input: batch, 3, 224, 224
|
| 474 |
+
input = x
|
| 475 |
+
# batch, 1024, 16, 16
|
| 476 |
+
out = []
|
| 477 |
+
f = []
|
| 478 |
+
cl = []
|
| 479 |
+
for i in range(2):
|
| 480 |
+
x = self.conv_layers[i](input) # shape = [*, width, grid, grid]
|
| 481 |
+
|
| 482 |
+
b, c, w, h = x.shape
|
| 483 |
+
# batch, 1024, 256
|
| 484 |
+
x = x.reshape(x.shape[0], x.shape[1],
|
| 485 |
+
-1) # shape = [*, width, grid ** 2]
|
| 486 |
+
# batch, 256, 1024
|
| 487 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
| 488 |
+
# batch, 257, 1024
|
| 489 |
+
x = torch.cat([
|
| 490 |
+
self.cls_layers[i].to(x.dtype) + torch.zeros(
|
| 491 |
+
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
|
| 492 |
+
],
|
| 493 |
+
dim=1) # shape = [*, grid ** 2 + 1, width]
|
| 494 |
+
|
| 495 |
+
x = x + self.pos_layers[i].to(x.dtype)
|
| 496 |
+
|
| 497 |
+
x = self.pre_layers[i](x)
|
| 498 |
+
# 257, batch, 1024
|
| 499 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 500 |
+
|
| 501 |
+
x, cls = self.tran_layers[i](x)
|
| 502 |
+
# batch, 257, 1024
|
| 503 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 504 |
+
|
| 505 |
+
# 用于分类
|
| 506 |
+
# x = self.ln_post(x[:, 0, :])
|
| 507 |
+
# feature
|
| 508 |
+
x = self.post_layers[i](x[:, 1:, :])
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
if self.proj_layers[i] is not None:
|
| 513 |
+
x = x @ self.proj_layers[i]
|
| 514 |
+
cls = [j @ self.proj_layers[i] for j in cls]
|
| 515 |
+
|
| 516 |
+
feat = x.permute(0,2,1).reshape(b, x.shape[2] , w, h)
|
| 517 |
+
out.append(x)
|
| 518 |
+
f.append(feat)
|
| 519 |
+
cl.append(cls)
|
| 520 |
+
return out, f, cl
|
| 521 |
+
|
| 522 |
+
"""
|
| 523 |
+
Long CLIP
|
| 524 |
+
"""
|
| 525 |
+
class LCLIP(nn.Module):
|
| 526 |
+
def __init__(self,
|
| 527 |
+
embed_dim: int,
|
| 528 |
+
# vision
|
| 529 |
+
image_resolution: int,
|
| 530 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
| 531 |
+
vision_width: int,
|
| 532 |
+
vision_patch_size: int,
|
| 533 |
+
# text
|
| 534 |
+
context_length: int,
|
| 535 |
+
vocab_size: int,
|
| 536 |
+
transformer_width: int,
|
| 537 |
+
transformer_heads: int,
|
| 538 |
+
transformer_layers: int,
|
| 539 |
+
load_from_clip: bool
|
| 540 |
+
):
|
| 541 |
+
super().__init__()
|
| 542 |
+
self.context_length = 248
|
| 543 |
+
|
| 544 |
+
if isinstance(vision_layers, (tuple, list)):
|
| 545 |
+
vision_heads = vision_width * 32 // 64
|
| 546 |
+
self.visual = ModifiedResNet(
|
| 547 |
+
layers=vision_layers,
|
| 548 |
+
output_dim=embed_dim,
|
| 549 |
+
heads=vision_heads,
|
| 550 |
+
input_resolution=image_resolution,
|
| 551 |
+
width=vision_width
|
| 552 |
+
)
|
| 553 |
+
else:
|
| 554 |
+
vision_heads = vision_width // 64
|
| 555 |
+
self.visual = VisionTransformer(
|
| 556 |
+
input_resolution=image_resolution,
|
| 557 |
+
patch_size=vision_patch_size,
|
| 558 |
+
width=vision_width,
|
| 559 |
+
layers=vision_layers,
|
| 560 |
+
heads=vision_heads,
|
| 561 |
+
output_dim=embed_dim
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
self.transformer = Transformer(
|
| 565 |
+
width=transformer_width,
|
| 566 |
+
layers=transformer_layers,
|
| 567 |
+
heads=transformer_heads,
|
| 568 |
+
attn_mask=self.build_attention_mask()
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
self.vocab_size = vocab_size
|
| 572 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
| 573 |
+
# self.positional_embedding = nn.Parameter(torch.empty(248, transformer_width))
|
| 574 |
+
|
| 575 |
+
if load_from_clip == False:
|
| 576 |
+
self.positional_embedding = nn.Parameter(torch.empty(248, transformer_width))
|
| 577 |
+
self.positional_embedding_res = nn.Parameter(torch.empty(248, transformer_width))
|
| 578 |
+
|
| 579 |
+
else:
|
| 580 |
+
self.positional_embedding = nn.Parameter(torch.empty(248, transformer_width))
|
| 581 |
+
|
| 582 |
+
self.ln_final = LayerNorm(transformer_width)
|
| 583 |
+
|
| 584 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
| 585 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 586 |
+
|
| 587 |
+
self.initialize_parameters()
|
| 588 |
+
self.mask1 = torch.zeros([248, 1])
|
| 589 |
+
self.mask1[:20, :] = 1
|
| 590 |
+
self.mask2 = torch.zeros([248, 1])
|
| 591 |
+
self.mask2[20:, :] = 1
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
def initialize_parameters(self):
|
| 595 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
| 596 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
| 597 |
+
|
| 598 |
+
if isinstance(self.visual, ModifiedResNet):
|
| 599 |
+
if self.visual.attnpool is not None:
|
| 600 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
| 601 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
| 602 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
| 603 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
| 604 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
| 605 |
+
|
| 606 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
| 607 |
+
for name, param in resnet_block.named_parameters():
|
| 608 |
+
if name.endswith("bn3.weight"):
|
| 609 |
+
nn.init.zeros_(param)
|
| 610 |
+
|
| 611 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
| 612 |
+
attn_std = self.transformer.width ** -0.5
|
| 613 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
| 614 |
+
for block in self.transformer.resblocks:
|
| 615 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
| 616 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
| 617 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
| 618 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
| 619 |
+
|
| 620 |
+
if self.text_projection is not None:
|
| 621 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
| 622 |
+
|
| 623 |
+
def build_attention_mask(self):
|
| 624 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
| 625 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 626 |
+
mask = torch.empty(self.context_length, self.context_length)
|
| 627 |
+
mask.fill_(float("-inf"))
|
| 628 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 629 |
+
return mask
|
| 630 |
+
|
| 631 |
+
@property
|
| 632 |
+
def dtype(self):
|
| 633 |
+
return self.visual.conv1.weight.dtype
|
| 634 |
+
|
| 635 |
+
def encode_image(self, image):
|
| 636 |
+
return self.visual(image.type(self.dtype))
|
| 637 |
+
|
| 638 |
+
def encode_text(self, text):
|
| 639 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
| 640 |
+
|
| 641 |
+
# x = x + (self.positional_embedding.to(x.device) * self.mask1.to(x.device)).type(self.dtype).to(x.device) + (self.positional_embedding_res.to(x.device) * self.mask2.to(x.device)).type(self.dtype).to(x.device)
|
| 642 |
+
x = x + (self.positional_embedding.to(x.device) * self.mask1.to(x.device)).type(self.dtype).to(x.device)
|
| 643 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 644 |
+
x = self.transformer(x)
|
| 645 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 646 |
+
x = self.ln_final(x).type(self.dtype)
|
| 647 |
+
|
| 648 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
| 649 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
| 650 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
| 651 |
+
|
| 652 |
+
return x
|
| 653 |
+
|
| 654 |
+
def encode_text_full(self, text):
|
| 655 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
| 656 |
+
|
| 657 |
+
x = x + (self.positional_embedding.to(x.device) * self.mask1.to(x.device)).type(self.dtype).to(x.device) + (self.positional_embedding_res.to(x.device) * self.mask2.to(x.device)).type(self.dtype).to(x.device)
|
| 658 |
+
|
| 659 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 660 |
+
x = self.transformer(x)
|
| 661 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 662 |
+
x = self.ln_final(x).type(self.dtype)
|
| 663 |
+
|
| 664 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
| 665 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
| 666 |
+
#x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
| 667 |
+
|
| 668 |
+
return x
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
def forward(self, image, text):
|
| 672 |
+
image_features = self.encode_image(image)
|
| 673 |
+
text_features, _ = self.encode_text(text)
|
| 674 |
+
|
| 675 |
+
# normalized features
|
| 676 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
| 677 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
| 678 |
+
|
| 679 |
+
# cosine similarity as logits
|
| 680 |
+
logit_scale = self.logit_scale.exp()
|
| 681 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 682 |
+
logits_per_text = logits_per_image.t()
|
| 683 |
+
|
| 684 |
+
# shape = [global_batch_size, global_batch_size]
|
| 685 |
+
return logits_per_image, logits_per_text
|
| 686 |
+
"""
|
| 687 |
+
original CLIP
|
| 688 |
+
"""
|
| 689 |
+
class CLIP(nn.Module):
|
| 690 |
+
def __init__(
|
| 691 |
+
self,
|
| 692 |
+
embed_dim: int,
|
| 693 |
+
# vision
|
| 694 |
+
image_resolution: int,
|
| 695 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
| 696 |
+
vision_width: int,
|
| 697 |
+
vision_patch_size: int,
|
| 698 |
+
# text
|
| 699 |
+
context_length: int,
|
| 700 |
+
txt_length: int,
|
| 701 |
+
vocab_size: int,
|
| 702 |
+
transformer_width: int,
|
| 703 |
+
transformer_heads: int,
|
| 704 |
+
transformer_layers: int):
|
| 705 |
+
super().__init__()
|
| 706 |
+
|
| 707 |
+
self.context_length = context_length
|
| 708 |
+
|
| 709 |
+
if isinstance(vision_layers, (tuple, list)):
|
| 710 |
+
vision_heads = vision_width * 32 // 64
|
| 711 |
+
self.visual = ModifiedResNet(layers=vision_layers,
|
| 712 |
+
output_dim=embed_dim,
|
| 713 |
+
heads=vision_heads,
|
| 714 |
+
input_resolution=image_resolution,
|
| 715 |
+
width=vision_width)
|
| 716 |
+
# self.fq_attnpool = AttentionPool2d(image_resolution // 32, vision_width* 32,
|
| 717 |
+
# vision_heads, embed_dim)
|
| 718 |
+
else:
|
| 719 |
+
vision_heads = vision_width // 64
|
| 720 |
+
self.visual = VisionTransformer(input_resolution=image_resolution,
|
| 721 |
+
patch_size=vision_patch_size,
|
| 722 |
+
width=vision_width,
|
| 723 |
+
layers=vision_layers,
|
| 724 |
+
heads=vision_heads,
|
| 725 |
+
output_dim=embed_dim)
|
| 726 |
+
|
| 727 |
+
self.transformer = Transformer(
|
| 728 |
+
width=transformer_width,
|
| 729 |
+
layers=transformer_layers,
|
| 730 |
+
heads=transformer_heads,
|
| 731 |
+
attn_mask=self.build_attention_mask(txt_length))
|
| 732 |
+
|
| 733 |
+
self.vocab_size = vocab_size
|
| 734 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
| 735 |
+
self.positional_embedding = nn.Parameter(
|
| 736 |
+
torch.empty(self.context_length, transformer_width))
|
| 737 |
+
self.ln_final = LayerNorm(transformer_width)
|
| 738 |
+
|
| 739 |
+
self.text_projection = nn.Parameter(
|
| 740 |
+
torch.empty(transformer_width, embed_dim))
|
| 741 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 742 |
+
|
| 743 |
+
self.token_embedding.requires_grad_ = False
|
| 744 |
+
self.initialize_parameters()
|
| 745 |
+
|
| 746 |
+
def initialize_parameters(self):
|
| 747 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
| 748 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
| 749 |
+
|
| 750 |
+
if isinstance(self.visual, ModifiedResNet):
|
| 751 |
+
if self.visual.attnpool is not None:
|
| 752 |
+
std = self.visual.attnpool.c_proj.in_features**-0.5
|
| 753 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
| 754 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
| 755 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
| 756 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
| 757 |
+
|
| 758 |
+
for resnet_block in [
|
| 759 |
+
self.visual.layer1, self.visual.layer2, self.visual.layer3,
|
| 760 |
+
self.visual.layer4
|
| 761 |
+
]:
|
| 762 |
+
for name, param in resnet_block.named_parameters():
|
| 763 |
+
if name.endswith("bn3.weight"):
|
| 764 |
+
nn.init.zeros_(param)
|
| 765 |
+
|
| 766 |
+
proj_std = (self.transformer.width**-0.5) * (
|
| 767 |
+
(2 * self.transformer.layers)**-0.5)
|
| 768 |
+
attn_std = self.transformer.width**-0.5
|
| 769 |
+
fc_std = (2 * self.transformer.width)**-0.5
|
| 770 |
+
for block in self.transformer.resblocks:
|
| 771 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
| 772 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
| 773 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
| 774 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
| 775 |
+
|
| 776 |
+
if self.text_projection is not None:
|
| 777 |
+
nn.init.normal_(self.text_projection,
|
| 778 |
+
std=self.transformer.width**-0.5)
|
| 779 |
+
|
| 780 |
+
def build_attention_mask(self, context_length):
|
| 781 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
| 782 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 783 |
+
mask = torch.empty(context_length, context_length)
|
| 784 |
+
mask.fill_(float("-inf"))
|
| 785 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 786 |
+
return mask
|
| 787 |
+
|
| 788 |
+
@property
|
| 789 |
+
def dtype(self):
|
| 790 |
+
return self.visual.conv1.weight.dtype
|
| 791 |
+
|
| 792 |
+
def encode_image(self, image):
|
| 793 |
+
return self.visual(image.type(self.dtype))
|
| 794 |
+
|
| 795 |
+
def encode_fq(self, image):
|
| 796 |
+
return self.fq_attnpool(image.type(self.dtype))
|
| 797 |
+
|
| 798 |
+
def encode_text(self, text):
|
| 799 |
+
a = self.token_embedding
|
| 800 |
+
x = self.token_embedding(text).type(
|
| 801 |
+
self.dtype) # [batch_size, n_ctx, d_model]
|
| 802 |
+
|
| 803 |
+
x = x + self.positional_embedding.type(self.dtype)[:x.size(1)]
|
| 804 |
+
# print(x.shape)
|
| 805 |
+
# print(x)
|
| 806 |
+
|
| 807 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 808 |
+
x = self.transformer(x)
|
| 809 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 810 |
+
x = self.ln_final(x).type(self.dtype)
|
| 811 |
+
# print(text[0])
|
| 812 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
| 813 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
| 814 |
+
state = x[torch.arange(x.shape[0]),
|
| 815 |
+
text.argmax(dim=-1)] @ self.text_projection
|
| 816 |
+
# x = x @ self.text_projection
|
| 817 |
+
# state = x[torch.arange(x.shape[0]), text.argmax(dim=-1)]
|
| 818 |
+
|
| 819 |
+
return x, state
|
| 820 |
+
|
| 821 |
+
def forward(self, image, text):
|
| 822 |
+
image_features = self.encode_image(image)
|
| 823 |
+
text_features = self.encode_text(text)
|
| 824 |
+
|
| 825 |
+
# normalized features
|
| 826 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 827 |
+
keepdim=True)
|
| 828 |
+
text_features = text_features / text_features.norm(dim=-1,
|
| 829 |
+
keepdim=True)
|
| 830 |
+
|
| 831 |
+
# cosine similarity as logits
|
| 832 |
+
logit_scale = self.logit_scale.exp()
|
| 833 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 834 |
+
logits_per_text = logits_per_image.t()
|
| 835 |
+
|
| 836 |
+
# shape = [global_batch_size, global_batch_size]
|
| 837 |
+
return logits_per_image, logits_per_text
|
| 838 |
+
|
| 839 |
+
"""
|
| 840 |
+
modified CLIP : without text encoder
|
| 841 |
+
"""
|
| 842 |
+
|
| 843 |
+
class zhCLIP(nn.Module):
|
| 844 |
+
def __init__(self,
|
| 845 |
+
embed_dim,
|
| 846 |
+
# vision
|
| 847 |
+
image_resolution: int,
|
| 848 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
| 849 |
+
vision_width: int,
|
| 850 |
+
vision_patch_size: int):
|
| 851 |
+
super().__init__()
|
| 852 |
+
|
| 853 |
+
|
| 854 |
+
|
| 855 |
+
if isinstance(vision_layers, (tuple, list)):
|
| 856 |
+
vision_heads = vision_width * 32 // 64
|
| 857 |
+
self.visual = ModifiedResNet(layers=vision_layers,
|
| 858 |
+
output_dim=embed_dim,
|
| 859 |
+
heads=vision_heads,
|
| 860 |
+
input_resolution=image_resolution,
|
| 861 |
+
width=vision_width)
|
| 862 |
+
self.fq_attnpool = AttentionPool2d(image_resolution // 32, vision_width* 32,
|
| 863 |
+
vision_heads, embed_dim)
|
| 864 |
+
else:
|
| 865 |
+
vision_heads = vision_width // 64
|
| 866 |
+
self.visual = ModifiedVisionTransformer(input_resolution=image_resolution,
|
| 867 |
+
patch_size=vision_patch_size,
|
| 868 |
+
width=vision_width,
|
| 869 |
+
layers=vision_layers,
|
| 870 |
+
heads=vision_heads,
|
| 871 |
+
output_dim=embed_dim)
|
| 872 |
+
|
| 873 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 874 |
+
self.initialize_parameters()
|
| 875 |
+
|
| 876 |
+
def initialize_parameters(self):
|
| 877 |
+
|
| 878 |
+
if isinstance(self.visual, ModifiedResNet):
|
| 879 |
+
if self.visual.attnpool is not None:
|
| 880 |
+
std = self.visual.attnpool.c_proj.in_features**-0.5
|
| 881 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
| 882 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
| 883 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
| 884 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
| 885 |
+
|
| 886 |
+
for resnet_block in [
|
| 887 |
+
self.visual.layer1, self.visual.layer2, self.visual.layer3,
|
| 888 |
+
self.visual.layer4
|
| 889 |
+
]:
|
| 890 |
+
for name, param in resnet_block.named_parameters():
|
| 891 |
+
if name.endswith("bn3.weight"):
|
| 892 |
+
nn.init.zeros_(param)
|
| 893 |
+
|
| 894 |
+
|
| 895 |
+
def build_attention_mask(self, context_length):
|
| 896 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
| 897 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 898 |
+
mask = torch.empty(context_length, context_length)
|
| 899 |
+
mask.fill_(float("-inf"))
|
| 900 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 901 |
+
return mask
|
| 902 |
+
|
| 903 |
+
@property
|
| 904 |
+
def dtype(self):
|
| 905 |
+
return self.visual.conv1.weight.dtype
|
| 906 |
+
|
| 907 |
+
def encode_image(self, image):
|
| 908 |
+
return self.visual(image.type(self.dtype))
|
| 909 |
+
|
| 910 |
+
def encode_fq(self, image):
|
| 911 |
+
return self.fq_attnpool(image.type(self.dtype))
|
| 912 |
+
|
| 913 |
+
def forward(self, image, text):
|
| 914 |
+
image_features = self.encode_image(image)
|
| 915 |
+
text_features = self.encode_text(text)
|
| 916 |
+
|
| 917 |
+
# normalized features
|
| 918 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 919 |
+
keepdim=True)
|
| 920 |
+
text_features = text_features / text_features.norm(dim=-1,
|
| 921 |
+
keepdim=True)
|
| 922 |
+
|
| 923 |
+
# cosine similarity as logits
|
| 924 |
+
logit_scale = self.logit_scale.exp()
|
| 925 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 926 |
+
logits_per_text = logits_per_image.t()
|
| 927 |
+
|
| 928 |
+
# shape = [global_batch_size, global_batch_size]
|
| 929 |
+
return logits_per_image, logits_per_text
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
def convert_weights(model: nn.Module):
|
| 933 |
+
"""Convert applicable model parameters to fp16"""
|
| 934 |
+
def _convert_weights_to_fp16(l):
|
| 935 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
| 936 |
+
l.weight.data = l.weight.data.half()
|
| 937 |
+
if l.bias is not None:
|
| 938 |
+
l.bias.data = l.bias.data.half()
|
| 939 |
+
|
| 940 |
+
if isinstance(l, nn.MultiheadAttention):
|
| 941 |
+
for attr in [
|
| 942 |
+
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
|
| 943 |
+
"in_proj_bias", "bias_k", "bias_v"
|
| 944 |
+
]:
|
| 945 |
+
tensor = getattr(l, attr)
|
| 946 |
+
if tensor is not None:
|
| 947 |
+
tensor.data = tensor.data.half()
|
| 948 |
+
|
| 949 |
+
for name in ["text_projection", "proj"]:
|
| 950 |
+
if hasattr(l, name):
|
| 951 |
+
attr = getattr(l, name)
|
| 952 |
+
if attr is not None:
|
| 953 |
+
attr.data = attr.data.half()
|
| 954 |
+
|
| 955 |
+
model.apply(_convert_weights_to_fp16)
|
| 956 |
+
|
| 957 |
+
class PromptLearner(nn.Module):
|
| 958 |
+
|
| 959 |
+
def __init__(self, transformer_width, context_length, vocab_size,
|
| 960 |
+
transformer_layers, transformer_heads, bert_embed_dim):
|
| 961 |
+
super().__init__()
|
| 962 |
+
|
| 963 |
+
self.transformer_width = transformer_width
|
| 964 |
+
self.context_length = context_length
|
| 965 |
+
self.vocab_size = vocab_size
|
| 966 |
+
self.token_embedding = nn.Embedding(self.vocab_size, self.transformer_width)
|
| 967 |
+
|
| 968 |
+
self.transformer = Transformer(
|
| 969 |
+
width=transformer_width,
|
| 970 |
+
layers=transformer_layers,
|
| 971 |
+
heads=transformer_heads,
|
| 972 |
+
attn_mask=self.build_attention_mask()
|
| 973 |
+
)
|
| 974 |
+
|
| 975 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
| 976 |
+
self.ln_final = LayerNorm(transformer_width)
|
| 977 |
+
|
| 978 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, bert_embed_dim))
|
| 979 |
+
|
| 980 |
+
|
| 981 |
+
# self.load_from_openai_model(pretrained_model=clip_pretrain)
|
| 982 |
+
|
| 983 |
+
def build_attention_mask(self):
|
| 984 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
| 985 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 986 |
+
mask = torch.empty(self.context_length, self.context_length)
|
| 987 |
+
mask.fill_(float("-inf"))
|
| 988 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 989 |
+
return mask
|
| 990 |
+
|
| 991 |
+
def init_label_emb(self, labels_path):
|
| 992 |
+
|
| 993 |
+
label = open(labels_path, 'r').readlines()
|
| 994 |
+
# label81 = open(unseen_labels_path, 'r').readlines()
|
| 995 |
+
# label1006 = label925 + label81
|
| 996 |
+
self.name_lens = [len(_tokenizer.encode(name)) for name in label]
|
| 997 |
+
self.label_token = torch.zeros((len(self.name_lens), self.context_length), dtype=torch.long)
|
| 998 |
+
for i, c in enumerate(label):
|
| 999 |
+
self.label_token[i] = tokenize(f"There is a {c.strip()} in the scene")
|
| 1000 |
+
self.label_emb = torch.zeros((len(self.name_lens), max(self.name_lens), self.transformer_width))
|
| 1001 |
+
for i, embed in enumerate(self.token_embedding(self.label_token)):
|
| 1002 |
+
self.label_emb[i][:self.name_lens[i]] = embed[4:4 + self.name_lens[i]].clone().detach()
|
| 1003 |
+
|
| 1004 |
+
# def load_from_openai_model(self, pretrained_model):
|
| 1005 |
+
# state_dict = clip.load(pretrained_model, jit=False)[0].state_dict()
|
| 1006 |
+
# load_dict = {}
|
| 1007 |
+
# for k, v in state_dict.items():
|
| 1008 |
+
# if not k.startswith("visual") and (
|
| 1009 |
+
# k not in ["logit_scale", "input_resolution", "context_length", "vocab_size"]):
|
| 1010 |
+
# load_dict[k] = v
|
| 1011 |
+
# msg = self.load_state_dict(load_dict)
|
| 1012 |
+
|
| 1013 |
+
def load_label_emb(self, label=None):
|
| 1014 |
+
self.name_lens = [len(_tokenizer.encode(name.split("\t")[-1])) for name in label]
|
| 1015 |
+
self.label_token = torch.zeros((len(self.name_lens), self.context_length), dtype=torch.long).cuda()
|
| 1016 |
+
for i, c in enumerate(label):
|
| 1017 |
+
name = c.split("\t")[-1]
|
| 1018 |
+
self.label_token[i] = tokenize(f"There is a {name.strip()} in the scene")
|
| 1019 |
+
self.label_emb = torch.zeros((len(self.name_lens), max(self.name_lens), self.transformer_width)).cuda()
|
| 1020 |
+
for i, embed in enumerate(self.token_embedding(self.label_token)):
|
| 1021 |
+
self.label_emb[i][:self.name_lens[i]] = embed[4:4 + self.name_lens[i]].clone().detach()
|
| 1022 |
+
|
| 1023 |
+
def forward(self, device):
|
| 1024 |
+
|
| 1025 |
+
label_embeds = self.token_embedding(self.label_token.to(device))
|
| 1026 |
+
|
| 1027 |
+
for i in range(label_embeds.shape[0]):
|
| 1028 |
+
label_embeds[i, 4:4 + self.name_lens[i], :] = self.label_emb[i][:self.name_lens[i]]
|
| 1029 |
+
|
| 1030 |
+
x = label_embeds + self.positional_embedding
|
| 1031 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 1032 |
+
|
| 1033 |
+
x = self.transformer(x)
|
| 1034 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 1035 |
+
x = self.ln_final(x)
|
| 1036 |
+
|
| 1037 |
+
res = x[torch.arange(x.shape[0]), self.label_token.argmax(dim=-1)] @ self.text_projection
|
| 1038 |
+
|
| 1039 |
+
return res
|
| 1040 |
+
|
| 1041 |
+
def build_promptlearner(state_dict: dict):
|
| 1042 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
| 1043 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
| 1044 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
| 1045 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
| 1046 |
+
transformer_heads = transformer_width // 64
|
| 1047 |
+
transformer_layers = len(
|
| 1048 |
+
set(
|
| 1049 |
+
k.split(".")[2] for k in state_dict
|
| 1050 |
+
if k.startswith(f"transformer.resblocks")))
|
| 1051 |
+
model = PromptLearner(transformer_width, context_length, vocab_size,
|
| 1052 |
+
transformer_layers, transformer_heads, embed_dim)
|
| 1053 |
+
# model = PromptLearner(embed_dim, vision_patch_size, context_length, txt_length, vocab_size,
|
| 1054 |
+
# transformer_width, transformer_heads, transformer_layers)
|
| 1055 |
+
load_dict = {}
|
| 1056 |
+
for k, v in state_dict.items():
|
| 1057 |
+
if not k.startswith("visual") and (
|
| 1058 |
+
k not in ["logit_scale", "input_resolution", "context_length", "vocab_size"]):
|
| 1059 |
+
load_dict[k] = v
|
| 1060 |
+
|
| 1061 |
+
convert_weights(model)
|
| 1062 |
+
model.load_state_dict(load_dict, False)
|
| 1063 |
+
|
| 1064 |
+
return model
|
| 1065 |
+
|
| 1066 |
+
def build_model(state_dict: dict, txt_length: int):
|
| 1067 |
+
vit = "visual.proj" in state_dict
|
| 1068 |
+
|
| 1069 |
+
if vit:
|
| 1070 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
| 1071 |
+
vision_layers = len([
|
| 1072 |
+
k for k in state_dict.keys()
|
| 1073 |
+
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
|
| 1074 |
+
])
|
| 1075 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
| 1076 |
+
grid_size = round(
|
| 1077 |
+
(state_dict["visual.positional_embedding"].shape[0] - 1)**0.5)
|
| 1078 |
+
image_resolution = vision_patch_size * grid_size
|
| 1079 |
+
else:
|
| 1080 |
+
counts: list = [
|
| 1081 |
+
len(
|
| 1082 |
+
set(
|
| 1083 |
+
k.split(".")[2] for k in state_dict
|
| 1084 |
+
if k.startswith(f"visual.layer{b}")))
|
| 1085 |
+
for b in [1, 2, 3, 4]
|
| 1086 |
+
]
|
| 1087 |
+
vision_layers = tuple(counts)
|
| 1088 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
| 1089 |
+
output_width = round(
|
| 1090 |
+
(state_dict["visual.attnpool.positional_embedding"].shape[0] -
|
| 1091 |
+
1)**0.5)
|
| 1092 |
+
vision_patch_size = None
|
| 1093 |
+
assert output_width**2 + 1 == state_dict[
|
| 1094 |
+
"visual.attnpool.positional_embedding"].shape[0]
|
| 1095 |
+
image_resolution = output_width * 32
|
| 1096 |
+
|
| 1097 |
+
vision_heads = vision_width * 32 // 64
|
| 1098 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
| 1099 |
+
# context_length = state_dict["positional_embedding"].shape[0]
|
| 1100 |
+
context_length = txt_length
|
| 1101 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
| 1102 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
| 1103 |
+
transformer_heads = transformer_width // 64
|
| 1104 |
+
transformer_layers = len(
|
| 1105 |
+
set(
|
| 1106 |
+
k.split(".")[2] for k in state_dict
|
| 1107 |
+
if k.startswith(f"transformer.resblocks")))
|
| 1108 |
+
|
| 1109 |
+
model = CLIP(embed_dim, image_resolution, vision_layers, vision_width,
|
| 1110 |
+
vision_patch_size, context_length, txt_length, vocab_size,
|
| 1111 |
+
transformer_width, transformer_heads, transformer_layers)
|
| 1112 |
+
|
| 1113 |
+
for key in ["input_resolution", "context_length", "vocab_size", 'positional_embedding']:
|
| 1114 |
+
if key in state_dict:
|
| 1115 |
+
del state_dict[key]
|
| 1116 |
+
|
| 1117 |
+
convert_weights(model)
|
| 1118 |
+
model.load_state_dict(state_dict, False)
|
| 1119 |
+
return model.eval(), image_resolution, vision_heads, embed_dim, vision_width, vision_patch_size
|
| 1120 |
+
|
| 1121 |
+
def build_lclip_model(state_dict: dict, load_from_clip: bool):
|
| 1122 |
+
vit = "visual.proj" in state_dict
|
| 1123 |
+
|
| 1124 |
+
if vit:
|
| 1125 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
| 1126 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
| 1127 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
| 1128 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
| 1129 |
+
image_resolution = vision_patch_size * grid_size
|
| 1130 |
+
|
| 1131 |
+
else:
|
| 1132 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
| 1133 |
+
vision_layers = tuple(counts)
|
| 1134 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
| 1135 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
| 1136 |
+
vision_patch_size = None
|
| 1137 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
| 1138 |
+
image_resolution = output_width * 32
|
| 1139 |
+
|
| 1140 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
| 1141 |
+
# print(embed_dim)
|
| 1142 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
| 1143 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
| 1144 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
| 1145 |
+
transformer_heads = transformer_width // 64
|
| 1146 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
|
| 1147 |
+
|
| 1148 |
+
model = LCLIP(
|
| 1149 |
+
embed_dim,
|
| 1150 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
| 1151 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, load_from_clip
|
| 1152 |
+
)
|
| 1153 |
+
|
| 1154 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
| 1155 |
+
if key in state_dict:
|
| 1156 |
+
del state_dict[key]
|
| 1157 |
+
|
| 1158 |
+
convert_weights(model)
|
| 1159 |
+
# model.load_state_dict(state_dict)
|
| 1160 |
+
model.load_state_dict(state_dict, strict=False)
|
| 1161 |
+
vision_heads = vision_width // 64
|
| 1162 |
+
# print(vision_heads)
|
| 1163 |
+
return model.eval(), image_resolution, vision_heads, embed_dim, vision_width, vision_patch_size
|
| 1164 |
+
|
| 1165 |
+
def build_modified_model(state_dict: dict, txt_length: int):
|
| 1166 |
+
vit = "visual.proj" in state_dict
|
| 1167 |
+
|
| 1168 |
+
if vit:
|
| 1169 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
| 1170 |
+
vision_layers = len([
|
| 1171 |
+
k for k in state_dict.keys()
|
| 1172 |
+
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
|
| 1173 |
+
])
|
| 1174 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
| 1175 |
+
grid_size = round(
|
| 1176 |
+
(state_dict["visual.positional_embedding"].shape[0] - 1)**0.5)
|
| 1177 |
+
image_resolution = vision_patch_size * grid_size
|
| 1178 |
+
else:
|
| 1179 |
+
counts: list = [
|
| 1180 |
+
len(
|
| 1181 |
+
set(
|
| 1182 |
+
k.split(".")[2] for k in state_dict
|
| 1183 |
+
if k.startswith(f"visual.layer{b}")))
|
| 1184 |
+
for b in [1, 2, 3, 4]
|
| 1185 |
+
]
|
| 1186 |
+
vision_layers = tuple(counts)
|
| 1187 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
| 1188 |
+
|
| 1189 |
+
output_width = round(
|
| 1190 |
+
(state_dict["visual.attnpool.positional_embedding"].shape[0] -
|
| 1191 |
+
1)**0.5)
|
| 1192 |
+
vision_patch_size = None
|
| 1193 |
+
assert output_width**2 + 1 == state_dict[
|
| 1194 |
+
"visual.attnpool.positional_embedding"].shape[0]
|
| 1195 |
+
image_resolution = output_width * 32
|
| 1196 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
| 1197 |
+
|
| 1198 |
+
model = zhCLIP(embed_dim, image_resolution, vision_layers, vision_width,
|
| 1199 |
+
vision_patch_size)
|
| 1200 |
+
|
| 1201 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
| 1202 |
+
if key in state_dict:
|
| 1203 |
+
del state_dict[key]
|
| 1204 |
+
|
| 1205 |
+
convert_weights(model)
|
| 1206 |
+
model.load_state_dict(state_dict, False)
|
| 1207 |
+
return model.eval()
|
cisen/model/layers.py
ADDED
|
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
# import open_clip
|
| 7 |
+
|
| 8 |
+
def conv_layer(in_dim, out_dim, kernel_size=1, padding=0, stride=1):
|
| 9 |
+
return nn.Sequential(
|
| 10 |
+
nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
|
| 11 |
+
nn.BatchNorm2d(out_dim), nn.ReLU(True))
|
| 12 |
+
# return nn.Sequential(
|
| 13 |
+
# nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
|
| 14 |
+
# nn.LayerNorm(out_dim), nn.ReLU(True))
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# def conv_layer_1(in_dim, out_dim, kernel_size=1, padding=0, stride=1):
|
| 18 |
+
# return nn.Sequential(
|
| 19 |
+
# nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
|
| 20 |
+
# nn.LayerNorm(out_dim), nn.ReLU(True))
|
| 21 |
+
|
| 22 |
+
def linear_layer(in_dim, out_dim,bias=False):
|
| 23 |
+
return nn.Sequential(nn.Linear(in_dim, out_dim, bias),
|
| 24 |
+
nn.BatchNorm1d(out_dim), nn.ReLU(True))
|
| 25 |
+
# return nn.Sequential(nn.Linear(in_dim, out_dim, bias),
|
| 26 |
+
# nn.LayerNorm(out_dim), nn.ReLU(True))
|
| 27 |
+
class AttentionPool2d(nn.Module):
|
| 28 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
| 31 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
| 32 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
| 33 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
| 34 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
| 35 |
+
self.num_heads = num_heads
|
| 36 |
+
|
| 37 |
+
def forward(self, x):
|
| 38 |
+
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
| 39 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
| 40 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
| 41 |
+
x, _ = F.multi_head_attention_forward(
|
| 42 |
+
query=x[:1], key=x, value=x,
|
| 43 |
+
embed_dim_to_check=x.shape[-1],
|
| 44 |
+
num_heads=self.num_heads,
|
| 45 |
+
q_proj_weight=self.q_proj.weight,
|
| 46 |
+
k_proj_weight=self.k_proj.weight,
|
| 47 |
+
v_proj_weight=self.v_proj.weight,
|
| 48 |
+
in_proj_weight=None,
|
| 49 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
| 50 |
+
bias_k=None,
|
| 51 |
+
bias_v=None,
|
| 52 |
+
add_zero_attn=False,
|
| 53 |
+
dropout_p=0,
|
| 54 |
+
out_proj_weight=self.c_proj.weight,
|
| 55 |
+
out_proj_bias=self.c_proj.bias,
|
| 56 |
+
use_separate_proj_weight=True,
|
| 57 |
+
training=self.training,
|
| 58 |
+
need_weights=False
|
| 59 |
+
)
|
| 60 |
+
return x.squeeze(0)
|
| 61 |
+
|
| 62 |
+
# class AttentionPool2d(nn.Module):
|
| 63 |
+
# def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
| 64 |
+
# super().__init__()
|
| 65 |
+
# self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
| 66 |
+
# self.k_proj = nn.Linear(embed_dim, embed_dim)
|
| 67 |
+
# self.q_proj = nn.Linear(embed_dim, embed_dim)
|
| 68 |
+
# self.v_proj = nn.Linear(embed_dim, embed_dim)
|
| 69 |
+
# self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
| 70 |
+
# self.num_heads = num_heads
|
| 71 |
+
#
|
| 72 |
+
# def forward(self, x):
|
| 73 |
+
# x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
| 74 |
+
# x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
| 75 |
+
# x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
| 76 |
+
# x, _ = F.multi_head_attention_forward(
|
| 77 |
+
# query=x, key=x, value=x,
|
| 78 |
+
# embed_dim_to_check=x.shape[-1],
|
| 79 |
+
# num_heads=self.num_heads,
|
| 80 |
+
# q_proj_weight=self.q_proj.weight,
|
| 81 |
+
# k_proj_weight=self.k_proj.weight,
|
| 82 |
+
# v_proj_weight=self.v_proj.weight,
|
| 83 |
+
# in_proj_weight=None,
|
| 84 |
+
# in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
| 85 |
+
# bias_k=None,
|
| 86 |
+
# bias_v=None,
|
| 87 |
+
# add_zero_attn=False,
|
| 88 |
+
# dropout_p=0,
|
| 89 |
+
# out_proj_weight=self.c_proj.weight,
|
| 90 |
+
# out_proj_bias=self.c_proj.bias,
|
| 91 |
+
# use_separate_proj_weight=True,
|
| 92 |
+
# training=self.training,
|
| 93 |
+
# need_weights=False
|
| 94 |
+
# )
|
| 95 |
+
#
|
| 96 |
+
# return x[0]
|
| 97 |
+
|
| 98 |
+
class CoordConv(nn.Module):
|
| 99 |
+
def __init__(self,
|
| 100 |
+
in_channels,
|
| 101 |
+
out_channels,
|
| 102 |
+
kernel_size=3,
|
| 103 |
+
padding=1,
|
| 104 |
+
stride=1):
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.conv1 = conv_layer(in_channels + 2, out_channels, kernel_size,
|
| 107 |
+
padding, stride)
|
| 108 |
+
|
| 109 |
+
def add_coord(self, input):
|
| 110 |
+
b, _, h, w = input.size()
|
| 111 |
+
x_range = torch.linspace(-1, 1, w, device=input.device)
|
| 112 |
+
y_range = torch.linspace(-1, 1, h, device=input.device)
|
| 113 |
+
y, x = torch.meshgrid(y_range, x_range)
|
| 114 |
+
y = y.expand([b, 1, -1, -1])
|
| 115 |
+
x = x.expand([b, 1, -1, -1])
|
| 116 |
+
coord_feat = torch.cat([x, y], 1)
|
| 117 |
+
input = torch.cat([input, coord_feat], 1)
|
| 118 |
+
return input
|
| 119 |
+
|
| 120 |
+
def forward(self, x):
|
| 121 |
+
x = self.add_coord(x)
|
| 122 |
+
x = self.conv1(x)
|
| 123 |
+
return x
|
| 124 |
+
|
| 125 |
+
class TransformerDecoder(nn.Module):
|
| 126 |
+
def __init__(self,
|
| 127 |
+
num_layers,
|
| 128 |
+
d_model,
|
| 129 |
+
nhead,
|
| 130 |
+
dim_ffn,
|
| 131 |
+
dropout,
|
| 132 |
+
return_intermediate=False):
|
| 133 |
+
super().__init__()
|
| 134 |
+
self.layers = nn.ModuleList([
|
| 135 |
+
TransformerDecoderLayer(d_model=d_model,
|
| 136 |
+
nhead=nhead,
|
| 137 |
+
dim_feedforward=dim_ffn,
|
| 138 |
+
dropout=dropout) for _ in range(num_layers)
|
| 139 |
+
])
|
| 140 |
+
self.num_layers = num_layers
|
| 141 |
+
self.norm = nn.LayerNorm(d_model)
|
| 142 |
+
self.return_intermediate = return_intermediate
|
| 143 |
+
|
| 144 |
+
@staticmethod
|
| 145 |
+
def pos1d(d_model, length):
|
| 146 |
+
"""
|
| 147 |
+
:param d_model: dimension of the model
|
| 148 |
+
:param length: length of positions
|
| 149 |
+
:return: length*d_model position matrix
|
| 150 |
+
"""
|
| 151 |
+
if d_model % 2 != 0:
|
| 152 |
+
raise ValueError("Cannot use sin/cos positional encoding with "
|
| 153 |
+
"odd dim (got dim={:d})".format(d_model))
|
| 154 |
+
pe = torch.zeros(length, d_model)
|
| 155 |
+
position = torch.arange(0, length).unsqueeze(1)
|
| 156 |
+
div_term = torch.exp((torch.arange(0, d_model, 2, dtype=torch.float) *
|
| 157 |
+
-(math.log(10000.0) / d_model)))
|
| 158 |
+
pe[:, 0::2] = torch.sin(position.float() * div_term)
|
| 159 |
+
pe[:, 1::2] = torch.cos(position.float() * div_term)
|
| 160 |
+
|
| 161 |
+
return pe.unsqueeze(1) # n, 1, 512
|
| 162 |
+
|
| 163 |
+
@staticmethod
|
| 164 |
+
def pos2d(d_model, height, width):
|
| 165 |
+
"""
|
| 166 |
+
:param d_model: dimension of the model
|
| 167 |
+
:param height: height of the positions
|
| 168 |
+
:param width: width of the positions
|
| 169 |
+
:return: d_model*height*width position matrix
|
| 170 |
+
"""
|
| 171 |
+
if d_model % 4 != 0:
|
| 172 |
+
raise ValueError("Cannot use sin/cos positional encoding with "
|
| 173 |
+
"odd dimension (got dim={:d})".format(d_model))
|
| 174 |
+
pe = torch.zeros(d_model, height, width)
|
| 175 |
+
# Each dimension use half of d_model
|
| 176 |
+
d_model = int(d_model / 2)
|
| 177 |
+
div_term = torch.exp(
|
| 178 |
+
torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
|
| 179 |
+
pos_w = torch.arange(0., width).unsqueeze(1)
|
| 180 |
+
pos_h = torch.arange(0., height).unsqueeze(1)
|
| 181 |
+
pe[0:d_model:2, :, :] = torch.sin(pos_w * div_term).transpose(
|
| 182 |
+
0, 1).unsqueeze(1).repeat(1, height, 1)
|
| 183 |
+
pe[1:d_model:2, :, :] = torch.cos(pos_w * div_term).transpose(
|
| 184 |
+
0, 1).unsqueeze(1).repeat(1, height, 1)
|
| 185 |
+
pe[d_model::2, :, :] = torch.sin(pos_h * div_term).transpose(
|
| 186 |
+
0, 1).unsqueeze(2).repeat(1, 1, width)
|
| 187 |
+
pe[d_model + 1::2, :, :] = torch.cos(pos_h * div_term).transpose(
|
| 188 |
+
0, 1).unsqueeze(2).repeat(1, 1, width)
|
| 189 |
+
|
| 190 |
+
return pe.reshape(-1, 1, height * width).permute(2, 1, 0) # hw, 1, 512
|
| 191 |
+
|
| 192 |
+
def forward(self, vis, txt, pad_mask):
|
| 193 |
+
'''
|
| 194 |
+
vis: b, 512, h, w
|
| 195 |
+
txt: b, L, 512
|
| 196 |
+
pad_mask: b, L
|
| 197 |
+
'''
|
| 198 |
+
B, C, H, W = vis.size()
|
| 199 |
+
_, L, D = txt.size()
|
| 200 |
+
# position encoding
|
| 201 |
+
vis_pos = self.pos2d(C, H, W)
|
| 202 |
+
txt_pos = self.pos1d(D, L)
|
| 203 |
+
# reshape & permute
|
| 204 |
+
vis = vis.reshape(B, C, -1).permute(2, 0, 1)
|
| 205 |
+
txt = txt.permute(1, 0, 2)
|
| 206 |
+
# forward
|
| 207 |
+
output = vis
|
| 208 |
+
intermediate = []
|
| 209 |
+
for layer in self.layers:
|
| 210 |
+
output = layer(output, txt, vis_pos, txt_pos, pad_mask)
|
| 211 |
+
if self.return_intermediate:
|
| 212 |
+
# HW, b, 512 -> b, 512, HW
|
| 213 |
+
intermediate.append(self.norm(output).permute(1, 2, 0))
|
| 214 |
+
|
| 215 |
+
if self.norm is not None:
|
| 216 |
+
# HW, b, 512 -> b, 512, HW
|
| 217 |
+
output = self.norm(output).permute(1, 2, 0)
|
| 218 |
+
if self.return_intermediate:
|
| 219 |
+
intermediate.pop()
|
| 220 |
+
intermediate.append(output)
|
| 221 |
+
# [output1, output2, ..., output_n]
|
| 222 |
+
return intermediate
|
| 223 |
+
else:
|
| 224 |
+
# b, 512, HW
|
| 225 |
+
return output
|
| 226 |
+
return output
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
class TransformerDecoderLayer(nn.Module):
|
| 230 |
+
def __init__(self,
|
| 231 |
+
d_model=512,
|
| 232 |
+
nhead=9,
|
| 233 |
+
dim_feedforward=2048,
|
| 234 |
+
dropout=0.1):
|
| 235 |
+
super().__init__()
|
| 236 |
+
# Normalization Layer
|
| 237 |
+
self.self_attn_norm = nn.LayerNorm(d_model)
|
| 238 |
+
self.cross_attn_norm = nn.LayerNorm(d_model)
|
| 239 |
+
# Attention Layer
|
| 240 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
| 241 |
+
self.multihead_attn = nn.MultiheadAttention(d_model,
|
| 242 |
+
nhead,
|
| 243 |
+
dropout=dropout,
|
| 244 |
+
kdim=d_model,
|
| 245 |
+
vdim=d_model)
|
| 246 |
+
# FFN
|
| 247 |
+
self.ffn = nn.Sequential(nn.Linear(d_model, dim_feedforward),
|
| 248 |
+
nn.ReLU(True), nn.Dropout(dropout),
|
| 249 |
+
nn.LayerNorm(dim_feedforward),
|
| 250 |
+
nn.Linear(dim_feedforward, d_model))
|
| 251 |
+
# LayerNorm & Dropout
|
| 252 |
+
self.norm1 = nn.LayerNorm(d_model)
|
| 253 |
+
self.norm2 = nn.LayerNorm(d_model)
|
| 254 |
+
self.norm3 = nn.LayerNorm(d_model)
|
| 255 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 256 |
+
self.dropout2 = nn.Dropout(dropout)
|
| 257 |
+
self.dropout3 = nn.Dropout(dropout)
|
| 258 |
+
|
| 259 |
+
def with_pos_embed(self, tensor, pos):
|
| 260 |
+
return tensor if pos is None else tensor + pos.to(tensor.device)
|
| 261 |
+
|
| 262 |
+
def forward(self, vis, txt, vis_pos, txt_pos, pad_mask):
|
| 263 |
+
'''
|
| 264 |
+
vis: 26*26, b, 512
|
| 265 |
+
txt: L, b, 512
|
| 266 |
+
vis_pos: 26*26, 1, 512
|
| 267 |
+
txt_pos: L, 1, 512
|
| 268 |
+
pad_mask: b, L
|
| 269 |
+
'''
|
| 270 |
+
# Self-Attention
|
| 271 |
+
vis2 = self.norm1(vis)
|
| 272 |
+
q = k = self.with_pos_embed(vis2, vis_pos)
|
| 273 |
+
vis2 = self.self_attn(q, k, value=vis2)[0]
|
| 274 |
+
vis2 = self.self_attn_norm(vis2)
|
| 275 |
+
vis = vis + self.dropout1(vis2)
|
| 276 |
+
# Cross-Attention
|
| 277 |
+
vis2 = self.norm2(vis)
|
| 278 |
+
vis2 = self.multihead_attn(query=self.with_pos_embed(vis2, vis_pos),
|
| 279 |
+
key=self.with_pos_embed(txt, txt_pos),
|
| 280 |
+
value=txt,
|
| 281 |
+
key_padding_mask=pad_mask)[0]
|
| 282 |
+
vis2 = self.cross_attn_norm(vis2)
|
| 283 |
+
vis = vis + self.dropout2(vis2)
|
| 284 |
+
# FFN
|
| 285 |
+
vis2 = self.norm3(vis)
|
| 286 |
+
vis2 = self.ffn(vis2)
|
| 287 |
+
vis = vis + self.dropout3(vis2)
|
| 288 |
+
return vis
|
| 289 |
+
|
| 290 |
+
class Text_Projector(nn.Module):
|
| 291 |
+
def __init__(self, args, in_channels=[512, 1024, 1024],
|
| 292 |
+
out_channels=[256, 512, 1024]):
|
| 293 |
+
|
| 294 |
+
super(Text_Projector, self).__init__()
|
| 295 |
+
|
| 296 |
+
self.proj = linear_layer(args, in_channels[2], out_channels[2])
|
| 297 |
+
self.ReLU = nn.ReLU(True)
|
| 298 |
+
|
| 299 |
+
def forward(self, text):
|
| 300 |
+
|
| 301 |
+
text = self.ReLU(text + self.proj(text))
|
| 302 |
+
|
| 303 |
+
return text
|
| 304 |
+
|
| 305 |
+
class Image_Projector(nn.Module):
|
| 306 |
+
def __init__(self, args, in_channels=[512, 1024, 1024],
|
| 307 |
+
out_channels=[256, 512, 1024]):
|
| 308 |
+
|
| 309 |
+
super(Image_Projector, self).__init__()
|
| 310 |
+
|
| 311 |
+
self.proj = linear_layer(args, in_channels[0], out_channels[2])
|
| 312 |
+
self.ReLU = nn.ReLU(True)
|
| 313 |
+
|
| 314 |
+
def forward(self, image):
|
| 315 |
+
|
| 316 |
+
image = self.ReLU(image + self.proj(image))
|
| 317 |
+
|
| 318 |
+
return image
|
| 319 |
+
|
| 320 |
+
class Adapter(nn.Module):
|
| 321 |
+
def __init__(self, c_in, reduction=4):
|
| 322 |
+
super(Adapter, self).__init__()
|
| 323 |
+
self.fc = nn.Sequential(
|
| 324 |
+
nn.Linear(c_in, c_in // reduction, bias=False),
|
| 325 |
+
nn.ReLU(inplace=True),
|
| 326 |
+
nn.Linear(c_in // reduction, c_in, bias=False),
|
| 327 |
+
nn.ReLU(inplace=True)
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
def forward(self, x):
|
| 331 |
+
x = self.fc(x)
|
| 332 |
+
return x
|
| 333 |
+
|
| 334 |
+
class GAP(nn.Module):
|
| 335 |
+
def __init__(self, kernel):
|
| 336 |
+
super(GAP, self).__init__()
|
| 337 |
+
self.k = kernel
|
| 338 |
+
# self.fc = nn.Linear(512, 1024)
|
| 339 |
+
def forward(self, x):
|
| 340 |
+
x = F.adaptive_avg_pool2d(x, self.k)
|
| 341 |
+
|
| 342 |
+
return x.squeeze(-1).squeeze(-1)
|
| 343 |
+
|
| 344 |
+
class AdaptiveSpatialFeatureFusion(nn.Module):
|
| 345 |
+
def __init__(self, args, in_channels=[512, 1024, 1024],
|
| 346 |
+
out_channels=[256, 512, 1024]):
|
| 347 |
+
|
| 348 |
+
super(AdaptiveSpatialFeatureFusion, self).__init__()
|
| 349 |
+
self.weight = nn.LayerNorm(out_channels[2])
|
| 350 |
+
self.proj = linear_layer(args, in_channels[0], out_channels[2])
|
| 351 |
+
|
| 352 |
+
def forward(self, feature_map1, feature_map2):
|
| 353 |
+
# feature_map1 : b, 1024, 1, 1
|
| 354 |
+
# feature_map2 : b, 512, 1, 1
|
| 355 |
+
feature_map2 = self.proj(feature_map2.squeeze(-1).squeeze(-1))
|
| 356 |
+
feature_map1 = feature_map1.squeeze(-1).squeeze(-1)
|
| 357 |
+
weights1 = torch.norm(feature_map1, dim=1).unsqueeze(-1)
|
| 358 |
+
weights2 = torch.norm(feature_map2, dim=1).unsqueeze(-1)
|
| 359 |
+
weights1 = weights1 / (weights1 + weights2)
|
| 360 |
+
weights2 = 1 - weights1
|
| 361 |
+
|
| 362 |
+
fused_feature_map = weights1 * feature_map1 + weights2 * feature_map2
|
| 363 |
+
# b, 1024
|
| 364 |
+
return fused_feature_map
|
| 365 |
+
|
| 366 |
+
class ModifiedAttentionPool2d(nn.Module):
|
| 367 |
+
def __init__(self,
|
| 368 |
+
spacial_dim: int,
|
| 369 |
+
embed_dim: int,
|
| 370 |
+
num_heads: int,
|
| 371 |
+
output_dim: int = None):
|
| 372 |
+
super().__init__()
|
| 373 |
+
self.spacial_dim = spacial_dim
|
| 374 |
+
self.positional_embedding = nn.Parameter(
|
| 375 |
+
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5)
|
| 376 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
| 377 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
| 378 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
| 379 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
| 380 |
+
self.num_heads = num_heads
|
| 381 |
+
# residual
|
| 382 |
+
self.connect = nn.Sequential(
|
| 383 |
+
nn.Conv2d(embed_dim, output_dim, 1, stride=1, bias=False),
|
| 384 |
+
nn.BatchNorm2d(output_dim))
|
| 385 |
+
|
| 386 |
+
def resize_pos_embed(self, pos_embed, input_shpae):
|
| 387 |
+
"""Resize pos_embed weights.
|
| 388 |
+
Resize pos_embed using bicubic interpolate method.
|
| 389 |
+
Args:
|
| 390 |
+
pos_embed (torch.Tensor): Position embedding weights.
|
| 391 |
+
input_shpae (tuple): Tuple for (downsampled input image height,
|
| 392 |
+
downsampled input image width).
|
| 393 |
+
pos_shape (tuple): The resolution of downsampled origin training
|
| 394 |
+
image.
|
| 395 |
+
mode (str): Algorithm used for upsampling:
|
| 396 |
+
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
|
| 397 |
+
``'trilinear'``. Default: ``'nearest'``
|
| 398 |
+
Return:
|
| 399 |
+
torch.Tensor: The resized pos_embed of shape [B, C, L_new]
|
| 400 |
+
"""
|
| 401 |
+
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
|
| 402 |
+
pos_h = pos_w = self.spacial_dim
|
| 403 |
+
cls_token_weight = pos_embed[:, 0]
|
| 404 |
+
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
|
| 405 |
+
pos_embed_weight = pos_embed_weight.reshape(
|
| 406 |
+
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
|
| 407 |
+
pos_embed_weight = F.interpolate(pos_embed_weight,
|
| 408 |
+
size=input_shpae,
|
| 409 |
+
align_corners=False,
|
| 410 |
+
mode='bicubic')
|
| 411 |
+
cls_token_weight = cls_token_weight.unsqueeze(1)
|
| 412 |
+
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
|
| 413 |
+
# pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
|
| 414 |
+
return pos_embed_weight.transpose(-2, -1)
|
| 415 |
+
|
| 416 |
+
def forward(self, x):
|
| 417 |
+
B, C, H, W = x.size()
|
| 418 |
+
res = self.connect(x)
|
| 419 |
+
x = x.reshape(B, C, -1) # NC(HW)
|
| 420 |
+
# x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(1+HW)
|
| 421 |
+
pos_embed = self.positional_embedding.unsqueeze(0)
|
| 422 |
+
pos_embed = self.resize_pos_embed(pos_embed, (H, W)) # NC(HW)
|
| 423 |
+
x = x + pos_embed.to(x.dtype) # NC(HW)
|
| 424 |
+
x = x.permute(2, 0, 1) # (HW)NC
|
| 425 |
+
x, _ = F.multi_head_attention_forward(
|
| 426 |
+
query=x,
|
| 427 |
+
key=x,
|
| 428 |
+
value=x,
|
| 429 |
+
embed_dim_to_check=x.shape[-1],
|
| 430 |
+
num_heads=self.num_heads,
|
| 431 |
+
q_proj_weight=self.q_proj.weight,
|
| 432 |
+
k_proj_weight=self.k_proj.weight,
|
| 433 |
+
v_proj_weight=self.v_proj.weight,
|
| 434 |
+
in_proj_weight=None,
|
| 435 |
+
in_proj_bias=torch.cat(
|
| 436 |
+
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
| 437 |
+
bias_k=None,
|
| 438 |
+
bias_v=None,
|
| 439 |
+
add_zero_attn=False,
|
| 440 |
+
dropout_p=0,
|
| 441 |
+
out_proj_weight=self.c_proj.weight,
|
| 442 |
+
out_proj_bias=self.c_proj.bias,
|
| 443 |
+
use_separate_proj_weight=True,
|
| 444 |
+
training=self.training,
|
| 445 |
+
need_weights=False)
|
| 446 |
+
xt = x[0]
|
| 447 |
+
x = x.permute(1, 2, 0).reshape(B, -1, H, W)
|
| 448 |
+
x = x + res
|
| 449 |
+
x = F.relu(x, True)
|
| 450 |
+
|
| 451 |
+
return x, xt
|
| 452 |
+
|
| 453 |
+
# modified
|
| 454 |
+
class FPN(nn.Module):
|
| 455 |
+
def __init__(self, args,
|
| 456 |
+
in_channels=[512, 1024, 1024],
|
| 457 |
+
out_channels=[256, 512, 1024, 1024]):
|
| 458 |
+
super(FPN, self).__init__()
|
| 459 |
+
input_resolution = args.input_size
|
| 460 |
+
heads = args.heads
|
| 461 |
+
output_dim = args.output_dim
|
| 462 |
+
embed_dim = args.emb_dim
|
| 463 |
+
# image projection
|
| 464 |
+
self.attn = ModifiedAttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
| 465 |
+
# text projection
|
| 466 |
+
self.txt_proj = linear_layer(args, in_channels[2], out_channels[2])
|
| 467 |
+
# fusion 1: v5 & seq -> f_5: b, 1024, 13, 13
|
| 468 |
+
self.f1_v_proj = conv_layer(in_channels[2], out_channels[2], 1, 0)
|
| 469 |
+
|
| 470 |
+
self.norm_layer = nn.Sequential(nn.BatchNorm2d(out_channels[2]),
|
| 471 |
+
nn.ReLU(True))
|
| 472 |
+
|
| 473 |
+
# fusion 2: v4 & fm -> f_4: b, 512, 26, 26
|
| 474 |
+
self.f2_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
|
| 475 |
+
self.f2_cat = conv_layer(out_channels[2] + out_channels[1],
|
| 476 |
+
out_channels[1], 1, 0)
|
| 477 |
+
# fusion 3: v3 & fm_mid -> f_3: b, 512, 52, 52
|
| 478 |
+
self.f3_v_proj = conv_layer(in_channels[0], out_channels[0], 3, 1)
|
| 479 |
+
self.f3_cat = conv_layer(out_channels[0] + out_channels[1],
|
| 480 |
+
out_channels[1], 1, 0)
|
| 481 |
+
# fusion 4: f_3 & f_4 & f_5 -> fq: b, 256, 26, 26
|
| 482 |
+
self.f4_proj5 = conv_layer(out_channels[2], out_channels[1], 3, 1)
|
| 483 |
+
self.f4_proj4 = conv_layer(out_channels[1], out_channels[1], 3, 1)
|
| 484 |
+
self.f4_proj3 = conv_layer(out_channels[1], out_channels[1], 3, 1)
|
| 485 |
+
# aggregation
|
| 486 |
+
self.aggr = conv_layer(3 * out_channels[1], out_channels[1], 1, 0)
|
| 487 |
+
self.coordconv = nn.Sequential(
|
| 488 |
+
CoordConv(out_channels[1], out_channels[1], 3, 1),
|
| 489 |
+
conv_layer(out_channels[1], out_channels[3], 3, 1))
|
| 490 |
+
|
| 491 |
+
def forward(self, imgs, text):
|
| 492 |
+
# v3, v4, v5: 256, 52, 52 / 512, 26, 26 / 1024, 13, 13
|
| 493 |
+
v3, v4, v5 = imgs
|
| 494 |
+
|
| 495 |
+
# fusion 1: b, 1024, 13, 13
|
| 496 |
+
# text projection: b, 1024 -> b, 1024
|
| 497 |
+
v5, _ = self.attn(v5)
|
| 498 |
+
text_ = self.txt_proj(text)
|
| 499 |
+
state = text_.unsqueeze(-1).unsqueeze(
|
| 500 |
+
-1)# b, 1024, 1, 1
|
| 501 |
+
|
| 502 |
+
f5 = self.f1_v_proj(v5) # b, 1024, 7, 7
|
| 503 |
+
|
| 504 |
+
f5 = self.norm_layer(f5 * state)
|
| 505 |
+
# fusion 2: b, 512, 26, 26
|
| 506 |
+
f4 = self.f2_v_proj(v4)
|
| 507 |
+
# f4 = f4.repeat(w2,1,1,1)
|
| 508 |
+
|
| 509 |
+
f5_ = F.interpolate(f5, scale_factor=2, mode='bilinear')
|
| 510 |
+
f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
|
| 511 |
+
# fusion 3: b, 256, 26, 26
|
| 512 |
+
f3 = self.f3_v_proj(v3)
|
| 513 |
+
f3 = F.avg_pool2d(f3, 2, 2)
|
| 514 |
+
# f3 = f3.repeat(w2, 1, 1, 1)
|
| 515 |
+
|
| 516 |
+
f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
|
| 517 |
+
# fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
|
| 518 |
+
fq5 = self.f4_proj5(f5)
|
| 519 |
+
fq4 = self.f4_proj4(f4)
|
| 520 |
+
fq3 = self.f4_proj3(f3)
|
| 521 |
+
# query
|
| 522 |
+
fq5 = F.interpolate(fq5, scale_factor=2, mode='bilinear')
|
| 523 |
+
fq = torch.cat([fq3, fq4, fq5], dim=1)
|
| 524 |
+
fq = self.aggr(fq)
|
| 525 |
+
fq = self.coordconv(fq)
|
| 526 |
+
# fqq = fq.reshape(w1, w2, fq.shape[1], fq.shape[2], fq.shape[3])
|
| 527 |
+
# b, 512, 26, 26
|
| 528 |
+
|
| 529 |
+
# elif text.shape[0] != v3.shape[0]:
|
| 530 |
+
#
|
| 531 |
+
# text = self.txt_proj(text)
|
| 532 |
+
# state = text.unsqueeze(-1).unsqueeze(
|
| 533 |
+
# -1) # b, 1024, 1, 1
|
| 534 |
+
# state = state.view(v5.shape[0], int(text.shape[0] / v5.shape[0]), state.shape[1], state.shape[2], state.shape[3])
|
| 535 |
+
#
|
| 536 |
+
# f5 = self.f1_v_proj(v5) # b, 1024, 7, 7
|
| 537 |
+
# f5 = f5.unsqueeze(1)
|
| 538 |
+
# f5_ = f5 * state
|
| 539 |
+
# f5_ = f5_.view(-1, f5.shape[2], f5.shape[3], f5.shape[4])
|
| 540 |
+
# f5 = self.norm_layer(f5_)
|
| 541 |
+
# # fusion 2: b, 512, 26, 26
|
| 542 |
+
# f4 = self.f2_v_proj(v4)
|
| 543 |
+
# # f4 = f4.repeat(w2,1,1,1)
|
| 544 |
+
#
|
| 545 |
+
# f5_ = F.interpolate(f5, scale_factor=2, mode='bilinear')
|
| 546 |
+
# f4 = f4.repeat(int(f5_.shape[0] / f4.shape[0]), 1, 1, 1)
|
| 547 |
+
# f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
|
| 548 |
+
#
|
| 549 |
+
# # fusion 3: b, 256, 26, 26
|
| 550 |
+
# f3 = self.f3_v_proj(v3)
|
| 551 |
+
# f3 = F.avg_pool2d(f3, 2, 2)
|
| 552 |
+
# # f3 = f3.repeat(w2, 1, 1, 1)
|
| 553 |
+
# f3 = f3.repeat(int(f5_.shape[0] / f3.shape[0]), 1, 1, 1)
|
| 554 |
+
# f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
|
| 555 |
+
# # fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
|
| 556 |
+
# fq5 = self.f4_proj5(f5)
|
| 557 |
+
# fq4 = self.f4_proj4(f4)
|
| 558 |
+
# fq3 = self.f4_proj3(f3)
|
| 559 |
+
# # query
|
| 560 |
+
# fq5 = F.interpolate(fq5, scale_factor=2, mode='bilinear')
|
| 561 |
+
# fq = torch.cat([fq3, fq4, fq5], dim=1)
|
| 562 |
+
# fq = self.aggr(fq)
|
| 563 |
+
# fq = self.coordconv(fq)
|
| 564 |
+
return fq
|
| 565 |
+
|
| 566 |
+
class ViTFPN(nn.Module):
|
| 567 |
+
def __init__(self, image_resolution,
|
| 568 |
+
in_channels=[512, 768, 768],
|
| 569 |
+
out_channels=[768, 768, 768, 512]):
|
| 570 |
+
super(ViTFPN, self).__init__()
|
| 571 |
+
# text projection
|
| 572 |
+
self.txt_proj = linear_layer(in_channels[0], out_channels[1])
|
| 573 |
+
# fusion 1: v5 & seq -> f_5: b, 1024, 13, 13
|
| 574 |
+
self.f1_v_proj = conv_layer(in_channels[1], out_channels[1], 1, 0)
|
| 575 |
+
self.norm_layer = nn.Sequential(nn.BatchNorm2d(out_channels[1]),
|
| 576 |
+
nn.ReLU(True))
|
| 577 |
+
# fusion 2: v4 & fm -> f_4: b, 512, 26, 26
|
| 578 |
+
self.f2_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
|
| 579 |
+
self.f2_cat = conv_layer(out_channels[0] + out_channels[0],
|
| 580 |
+
out_channels[0], 1, 0)
|
| 581 |
+
# fusion 3: v3 & fm_mid -> f_3: b, 512, 52, 52
|
| 582 |
+
self.f3_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
|
| 583 |
+
self.f3_cat = conv_layer(out_channels[0] + out_channels[1],
|
| 584 |
+
out_channels[1], 1, 0)
|
| 585 |
+
# fusion 4: f_3 & f_4 & f_5 -> fq: b, 256, 26, 26
|
| 586 |
+
self.f4_proj5 = conv_layer(out_channels[1], out_channels[0], 3, 1)
|
| 587 |
+
self.f4_proj4 = conv_layer(out_channels[0], out_channels[0], 3, 1)
|
| 588 |
+
self.f4_proj3 = conv_layer(out_channels[1], out_channels[1], 3, 1)
|
| 589 |
+
# aggregation
|
| 590 |
+
self.aggr = conv_layer(3 * out_channels[0], out_channels[0], 1, 0)
|
| 591 |
+
self.coordconv = nn.Sequential(
|
| 592 |
+
CoordConv(out_channels[0], out_channels[0], 3, 1),
|
| 593 |
+
conv_layer(out_channels[0], out_channels[-1], 3, 1))
|
| 594 |
+
|
| 595 |
+
self.attnpool = AttentionPool2d(image_resolution // 32, out_channels[-1],
|
| 596 |
+
8, out_channels[-1])
|
| 597 |
+
def forward(self, imgs, state, vis):
|
| 598 |
+
# v1 / v2 / b, 49, 1024/ b, 196, 512
|
| 599 |
+
v3, v4, v5 = imgs
|
| 600 |
+
# fusion 1: b, 1024, 13, 13
|
| 601 |
+
# text projection: b, 1024 -> b, 1024
|
| 602 |
+
state = self.txt_proj(state)
|
| 603 |
+
state = state.unsqueeze(-1).unsqueeze(
|
| 604 |
+
-1)# b, 1024, 1, 1
|
| 605 |
+
f5 = self.f1_v_proj(v5)
|
| 606 |
+
f5 = self.norm_layer(f5 * state)
|
| 607 |
+
# fusion 2: b, 512, 26, 26
|
| 608 |
+
f4 = self.f2_v_proj(v4)
|
| 609 |
+
b, c, h, w = f4.size()
|
| 610 |
+
f5_ = F.interpolate(f5, (h, w), mode='bilinear')
|
| 611 |
+
f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
|
| 612 |
+
|
| 613 |
+
# fusion 3: b, 256, 26, 26
|
| 614 |
+
f3 = self.f3_v_proj(v3)
|
| 615 |
+
f3 = F.avg_pool2d(f3, 2, 2)
|
| 616 |
+
# f3 = f3.repeat(w2, 1, 1, 1)
|
| 617 |
+
|
| 618 |
+
f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
|
| 619 |
+
# fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
|
| 620 |
+
fq5 = self.f4_proj5(f5)
|
| 621 |
+
fq4 = self.f4_proj4(f4)
|
| 622 |
+
fq3 = self.f4_proj3(f3)
|
| 623 |
+
# query
|
| 624 |
+
fq5 = F.interpolate(fq5, (h, w), mode='bilinear')
|
| 625 |
+
fq = torch.cat([fq3, fq4, fq5], dim=1)
|
| 626 |
+
fq = self.aggr(fq)
|
| 627 |
+
if not vis:
|
| 628 |
+
fq = self.coordconv(fq)
|
| 629 |
+
fq = self.attnpool(fq)
|
| 630 |
+
# b, 512, 26, 26
|
| 631 |
+
return fq
|
| 632 |
+
|
| 633 |
+
|
cisen/model/segmenter.py
ADDED
|
@@ -0,0 +1,2045 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
+
from .clip import build_model, build_promptlearner, build_modified_model, PromptLearner, build_lclip_model
|
| 7 |
+
from torch.cuda.amp import autocast as autocast
|
| 8 |
+
from timm.models.layers import trunc_normal_ as __call_trunc_normal_
|
| 9 |
+
from timm.models.layers import variance_scaling_
|
| 10 |
+
from einops import rearrange, repeat
|
| 11 |
+
from loguru import logger
|
| 12 |
+
from transformers import AlignProcessor, AlignModel
|
| 13 |
+
from sklearn.metrics import classification_report
|
| 14 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 15 |
+
from .layers import FPN, TransformerDecoder, ViTFPN, AdaptiveSpatialFeatureFusion, Text_Projector, Image_Projector, Adapter, GAP
|
| 16 |
+
from cisen.model.clip import CLIP
|
| 17 |
+
def lecun_normal_(tensor):
|
| 18 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
| 19 |
+
|
| 20 |
+
def trunc_normal_(tensor, mean=0.0, std=1.0):
|
| 21 |
+
__call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std)
|
| 22 |
+
|
| 23 |
+
class CISEN_vit(nn.Module, PyTorchModelHubMixin):
|
| 24 |
+
def __init__(self, cfg):
|
| 25 |
+
super().__init__()
|
| 26 |
+
# Vision & Text Encoder & Label Encoder
|
| 27 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
| 28 |
+
map_location="cpu").eval()
|
| 29 |
+
|
| 30 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, patch_size = build_model(clip_model.state_dict(), cfg.word_len)
|
| 31 |
+
self.backbone = backbone.float()
|
| 32 |
+
self.patch_emb = image_resolution // patch_size
|
| 33 |
+
cfg.image_resolution = image_resolution
|
| 34 |
+
cfg.input_size = image_resolution
|
| 35 |
+
cfg.heads = vision_heads // 32
|
| 36 |
+
cfg.emb_dim = vision_width
|
| 37 |
+
cfg.output_dim = embed_dim
|
| 38 |
+
|
| 39 |
+
# multi-scale adapter
|
| 40 |
+
# Multi-Modal FPN
|
| 41 |
+
self.FPN = ViTFPN(image_resolution, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 42 |
+
# Fined-grained Fusion
|
| 43 |
+
# self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
| 44 |
+
# d_model=cfg.vis_dim,
|
| 45 |
+
# nhead=cfg.num_head,
|
| 46 |
+
# dim_ffn=cfg.dim_ffn,
|
| 47 |
+
# dropout=cfg.dropout,
|
| 48 |
+
# return_intermediate=cfg.intermediate)
|
| 49 |
+
|
| 50 |
+
# image-text transformer
|
| 51 |
+
# self.trans = nn.Linear(1024, 1024)
|
| 52 |
+
self.ADP = Adapter(cfg.output_dim, 4)
|
| 53 |
+
# parameter
|
| 54 |
+
self.ratio = cfg.ratio
|
| 55 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 56 |
+
self.share_temperature = True
|
| 57 |
+
self.ce = nn.CrossEntropyLoss()
|
| 58 |
+
self.ms_adaptor = nn.ModuleList(
|
| 59 |
+
[
|
| 60 |
+
nn.Sequential(
|
| 61 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
| 62 |
+
nn.GroupNorm(32, cfg.emb_dim),
|
| 63 |
+
nn.GELU(),
|
| 64 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
| 65 |
+
),
|
| 66 |
+
nn.Sequential(
|
| 67 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
| 68 |
+
),
|
| 69 |
+
nn.Sequential(
|
| 70 |
+
nn.Identity(),
|
| 71 |
+
),
|
| 72 |
+
nn.Sequential(
|
| 73 |
+
nn.MaxPool2d(2),
|
| 74 |
+
),
|
| 75 |
+
|
| 76 |
+
]
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
self.ms_adaptor.apply(self.init_adaptor)
|
| 80 |
+
def init_adaptor(self, m):
|
| 81 |
+
if isinstance(m, nn.Conv2d):
|
| 82 |
+
lecun_normal_(m.weight)
|
| 83 |
+
if m.bias is not None:
|
| 84 |
+
nn.init.constant_(m.bias, 0)
|
| 85 |
+
elif isinstance(m, nn.GroupNorm):
|
| 86 |
+
nn.init.constant_(m.bias, 0)
|
| 87 |
+
nn.init.constant_(m.weight, 1.0)
|
| 88 |
+
elif isinstance(m, nn.ConvTranspose2d):
|
| 89 |
+
lecun_normal_(m.weight)
|
| 90 |
+
if m.bias is not None:
|
| 91 |
+
nn.init.zeros_(m.bias)
|
| 92 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def IT_loss(self, image_features, text_features):
|
| 96 |
+
# b, 1024 / b, 1024
|
| 97 |
+
batch = image_features.shape[0]
|
| 98 |
+
# # normalized features
|
| 99 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 100 |
+
keepdim=True)
|
| 101 |
+
text_features = text_features / text_features.norm(dim=-1,
|
| 102 |
+
keepdim=True)
|
| 103 |
+
|
| 104 |
+
# cosine similarity as logits
|
| 105 |
+
logit_scale = self.logit_scale.exp()
|
| 106 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 107 |
+
logits_per_text = logits_per_image.t()
|
| 108 |
+
|
| 109 |
+
# shape = [global_batch_size, global_batch_size]
|
| 110 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
| 111 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
return contrastive_loss
|
| 115 |
+
|
| 116 |
+
def forward(self, img, txt, stage):
|
| 117 |
+
|
| 118 |
+
if stage == '1st':
|
| 119 |
+
'''
|
| 120 |
+
img: b, 3, h, w
|
| 121 |
+
word: b, words
|
| 122 |
+
word_mask: b, words
|
| 123 |
+
mask: b, 1, h, w
|
| 124 |
+
stage: 1st or 2nd stage
|
| 125 |
+
'''
|
| 126 |
+
# padding mask used in decoder
|
| 127 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 128 |
+
|
| 129 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 130 |
+
# word: b, length, 512
|
| 131 |
+
# text: b, 1024
|
| 132 |
+
# image: b, 1024
|
| 133 |
+
vis, image = self.backbone.encode_image(img)
|
| 134 |
+
|
| 135 |
+
word, text = self.backbone.encode_text(txt)
|
| 136 |
+
|
| 137 |
+
x = self.ADP(image)
|
| 138 |
+
|
| 139 |
+
x = self.ratio * x + (1-self.ratio) * image
|
| 140 |
+
|
| 141 |
+
# b, 1024
|
| 142 |
+
# fq_t = self.FPN(vis, x)
|
| 143 |
+
#
|
| 144 |
+
# fv_t = self.gap(fq_t)
|
| 145 |
+
|
| 146 |
+
loss1 = self.IT_loss(x, text)
|
| 147 |
+
|
| 148 |
+
loss = loss1
|
| 149 |
+
|
| 150 |
+
ft = text
|
| 151 |
+
fi = x
|
| 152 |
+
fv = None
|
| 153 |
+
elif stage == '2nd':
|
| 154 |
+
'''
|
| 155 |
+
img: b, 3, h, w
|
| 156 |
+
word: b, words
|
| 157 |
+
word_mask: b, words
|
| 158 |
+
mask: b, 1, h, w
|
| 159 |
+
stage: 1st or 2nd stage
|
| 160 |
+
'''
|
| 161 |
+
# padding mask used in decoder
|
| 162 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 163 |
+
|
| 164 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 165 |
+
# word: b, length, 512
|
| 166 |
+
# text: b, 1024
|
| 167 |
+
# image: b, 1024
|
| 168 |
+
vis, image = self.backbone.encode_image(img)
|
| 169 |
+
|
| 170 |
+
word, text = self.backbone.encode_text(txt)
|
| 171 |
+
|
| 172 |
+
x = self.ADP(image)
|
| 173 |
+
|
| 174 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
| 175 |
+
# Construct multi-scale feats
|
| 176 |
+
vis_trans = []
|
| 177 |
+
for i in range(len(self.ms_adaptor)):
|
| 178 |
+
x_ = rearrange(
|
| 179 |
+
vis[i],
|
| 180 |
+
"b (h w) c -> b c h w",
|
| 181 |
+
h=self.patch_emb,
|
| 182 |
+
w=self.patch_emb,
|
| 183 |
+
).contiguous()
|
| 184 |
+
|
| 185 |
+
feats = self.ms_adaptor[i](x_)
|
| 186 |
+
|
| 187 |
+
vis_trans.append(feats)
|
| 188 |
+
|
| 189 |
+
# fq = self.FPN(vis, x_t)
|
| 190 |
+
fv_t = self.FPN(vis_trans[1:], x, False)
|
| 191 |
+
# fv_t = self.gap(fq_t)
|
| 192 |
+
|
| 193 |
+
# b, 1024
|
| 194 |
+
|
| 195 |
+
loss2 = self.IT_loss(fv_t, text)
|
| 196 |
+
|
| 197 |
+
loss = (loss2)
|
| 198 |
+
fv = fv_t
|
| 199 |
+
ft = text
|
| 200 |
+
fi = x
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
return loss, fv, fi, ft
|
| 204 |
+
|
| 205 |
+
def visualize(self, img, txt):
|
| 206 |
+
vis, image = self.backbone.encode_image(img)
|
| 207 |
+
word, text = self.backbone.encode_text(txt)
|
| 208 |
+
|
| 209 |
+
x = self.ADP(image)
|
| 210 |
+
|
| 211 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
| 212 |
+
# Construct multi-scale feats
|
| 213 |
+
vis_trans = []
|
| 214 |
+
for i in range(len(self.ms_adaptor)):
|
| 215 |
+
x_ = rearrange(
|
| 216 |
+
vis[i],
|
| 217 |
+
"b (h w) c -> b c h w",
|
| 218 |
+
h=self.patch_emb,
|
| 219 |
+
w=self.patch_emb,
|
| 220 |
+
).contiguous()
|
| 221 |
+
|
| 222 |
+
feats = self.ms_adaptor[i](x_)
|
| 223 |
+
|
| 224 |
+
vis_trans.append(feats)
|
| 225 |
+
|
| 226 |
+
# fq = self.FPN(vis, x_t)
|
| 227 |
+
fv_t = self.FPN(vis_trans[1:], x, True)
|
| 228 |
+
ft_t = self.FPN(vis_trans[1:], text, True)
|
| 229 |
+
return vis, fv_t, ft_t
|
| 230 |
+
|
| 231 |
+
class CISEN_rsvit(nn.Module, PyTorchModelHubMixin):
|
| 232 |
+
def __init__(self, cfg):
|
| 233 |
+
super().__init__()
|
| 234 |
+
# Vision & Text Encoder & Label Encoder
|
| 235 |
+
clip_model = torch.load(cfg.clip_pretrain,
|
| 236 |
+
map_location="cpu")
|
| 237 |
+
|
| 238 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, patch_size = build_model(clip_model, cfg.word_len)
|
| 239 |
+
self.backbone = backbone.float()
|
| 240 |
+
self.patch_emb = image_resolution // patch_size
|
| 241 |
+
|
| 242 |
+
cfg.image_resolution = image_resolution
|
| 243 |
+
cfg.input_size = image_resolution
|
| 244 |
+
cfg.heads = vision_heads // 32
|
| 245 |
+
cfg.emb_dim = vision_width
|
| 246 |
+
cfg.output_dim = embed_dim
|
| 247 |
+
|
| 248 |
+
# multi-scale adapter
|
| 249 |
+
# Multi-Modal FPN
|
| 250 |
+
self.FPN = ViTFPN(image_resolution, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 251 |
+
# Fined-grained Fusion
|
| 252 |
+
# self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
| 253 |
+
# d_model=cfg.vis_dim,
|
| 254 |
+
# nhead=cfg.num_head,
|
| 255 |
+
# dim_ffn=cfg.dim_ffn,
|
| 256 |
+
# dropout=cfg.dropout,
|
| 257 |
+
# return_intermediate=cfg.intermediate)
|
| 258 |
+
|
| 259 |
+
# image-text transformer
|
| 260 |
+
# self.trans = nn.Linear(1024, 1024)
|
| 261 |
+
self.ADP = Adapter(cfg.output_dim, 4)
|
| 262 |
+
# parameter
|
| 263 |
+
self.ratio = cfg.ratio
|
| 264 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 265 |
+
self.share_temperature = True
|
| 266 |
+
self.ce = nn.CrossEntropyLoss()
|
| 267 |
+
self.ms_adaptor = nn.ModuleList(
|
| 268 |
+
[
|
| 269 |
+
nn.Sequential(
|
| 270 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
| 271 |
+
nn.GroupNorm(32, cfg.emb_dim),
|
| 272 |
+
nn.GELU(),
|
| 273 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
| 274 |
+
),
|
| 275 |
+
nn.Sequential(
|
| 276 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
| 277 |
+
),
|
| 278 |
+
nn.Sequential(
|
| 279 |
+
nn.Identity(),
|
| 280 |
+
),
|
| 281 |
+
nn.Sequential(
|
| 282 |
+
nn.MaxPool2d(2),
|
| 283 |
+
),
|
| 284 |
+
|
| 285 |
+
]
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
self.ms_adaptor.apply(self.init_adaptor)
|
| 289 |
+
def init_adaptor(self, m):
|
| 290 |
+
if isinstance(m, nn.Conv2d):
|
| 291 |
+
lecun_normal_(m.weight)
|
| 292 |
+
if m.bias is not None:
|
| 293 |
+
nn.init.constant_(m.bias, 0)
|
| 294 |
+
elif isinstance(m, nn.GroupNorm):
|
| 295 |
+
nn.init.constant_(m.bias, 0)
|
| 296 |
+
nn.init.constant_(m.weight, 1.0)
|
| 297 |
+
elif isinstance(m, nn.ConvTranspose2d):
|
| 298 |
+
lecun_normal_(m.weight)
|
| 299 |
+
if m.bias is not None:
|
| 300 |
+
nn.init.zeros_(m.bias)
|
| 301 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def IT_loss(self, image_features, text_features):
|
| 305 |
+
# b, 1024 / b, 1024
|
| 306 |
+
batch = image_features.shape[0]
|
| 307 |
+
# # normalized features
|
| 308 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 309 |
+
keepdim=True)
|
| 310 |
+
text_features = text_features / text_features.norm(dim=-1,
|
| 311 |
+
keepdim=True)
|
| 312 |
+
|
| 313 |
+
# cosine similarity as logits
|
| 314 |
+
logit_scale = self.logit_scale.exp()
|
| 315 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 316 |
+
logits_per_text = logits_per_image.t()
|
| 317 |
+
|
| 318 |
+
# shape = [global_batch_size, global_batch_size]
|
| 319 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
| 320 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
return contrastive_loss
|
| 324 |
+
def image_encode(self, img):
|
| 325 |
+
vis, image = self.backbone.encode_image(img)
|
| 326 |
+
|
| 327 |
+
x = self.ADP(image)
|
| 328 |
+
|
| 329 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
| 330 |
+
return x
|
| 331 |
+
|
| 332 |
+
def text_encode(self, txt):
|
| 333 |
+
|
| 334 |
+
word, text = self.backbone.encode_text(txt)
|
| 335 |
+
|
| 336 |
+
return text
|
| 337 |
+
|
| 338 |
+
def forward(self, img, txt, stage):
|
| 339 |
+
|
| 340 |
+
if stage == '1st':
|
| 341 |
+
'''
|
| 342 |
+
img: b, 3, h, w
|
| 343 |
+
word: b, words
|
| 344 |
+
word_mask: b, words
|
| 345 |
+
mask: b, 1, h, w
|
| 346 |
+
stage: 1st or 2nd stage
|
| 347 |
+
'''
|
| 348 |
+
# padding mask used in decoder
|
| 349 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 350 |
+
|
| 351 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 352 |
+
# word: b, length, 512
|
| 353 |
+
# text: b, 1024
|
| 354 |
+
# image: b, 1024
|
| 355 |
+
vis, image = self.backbone.encode_image(img)
|
| 356 |
+
|
| 357 |
+
word, text = self.backbone.encode_text(txt)
|
| 358 |
+
|
| 359 |
+
x = self.ADP(image)
|
| 360 |
+
|
| 361 |
+
x = self.ratio * x + (1-self.ratio) * image
|
| 362 |
+
|
| 363 |
+
# b, 1024
|
| 364 |
+
# fq_t = self.FPN(vis, x)
|
| 365 |
+
#
|
| 366 |
+
# fv_t = self.gap(fq_t)
|
| 367 |
+
|
| 368 |
+
loss1 = self.IT_loss(x, text)
|
| 369 |
+
|
| 370 |
+
loss = loss1
|
| 371 |
+
|
| 372 |
+
ft = text
|
| 373 |
+
fi = x
|
| 374 |
+
fv = None
|
| 375 |
+
elif stage == '2nd':
|
| 376 |
+
'''
|
| 377 |
+
img: b, 3, h, w
|
| 378 |
+
word: b, words
|
| 379 |
+
word_mask: b, words
|
| 380 |
+
mask: b, 1, h, w
|
| 381 |
+
stage: 1st or 2nd stage
|
| 382 |
+
'''
|
| 383 |
+
# padding mask used in decoder
|
| 384 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 385 |
+
|
| 386 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 387 |
+
# word: b, length, 512
|
| 388 |
+
# text: b, 1024
|
| 389 |
+
# image: b, 1024
|
| 390 |
+
vis, image = self.backbone.encode_image(img)
|
| 391 |
+
|
| 392 |
+
word, text = self.backbone.encode_text(txt)
|
| 393 |
+
|
| 394 |
+
x = self.ADP(image)
|
| 395 |
+
|
| 396 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
| 397 |
+
# Construct multi-scale feats
|
| 398 |
+
vis_trans = []
|
| 399 |
+
for i in range(len(self.ms_adaptor)):
|
| 400 |
+
x_ = rearrange(
|
| 401 |
+
vis[i],
|
| 402 |
+
"b (h w) c -> b c h w",
|
| 403 |
+
h=self.patch_emb,
|
| 404 |
+
w=self.patch_emb,
|
| 405 |
+
).contiguous()
|
| 406 |
+
|
| 407 |
+
feats = self.ms_adaptor[i](x_)
|
| 408 |
+
|
| 409 |
+
vis_trans.append(feats)
|
| 410 |
+
|
| 411 |
+
# fq = self.FPN(vis, x_t)
|
| 412 |
+
fv_t = self.FPN(vis_trans[1:], x, False)
|
| 413 |
+
# fv_t = self.gap(fq_t)
|
| 414 |
+
|
| 415 |
+
# b, 1024
|
| 416 |
+
|
| 417 |
+
loss2 = self.IT_loss(fv_t, text)
|
| 418 |
+
|
| 419 |
+
loss = (loss2)
|
| 420 |
+
fv = fv_t
|
| 421 |
+
ft = text
|
| 422 |
+
fi = x
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
return loss, fv, fi, ft
|
| 426 |
+
|
| 427 |
+
def visualize(self, img):
|
| 428 |
+
vis, image = self.backbone.encode_image(img)
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
x = self.ADP(image)
|
| 432 |
+
|
| 433 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
| 434 |
+
# Construct multi-scale feats
|
| 435 |
+
vis_trans = []
|
| 436 |
+
for i in range(len(self.ms_adaptor)):
|
| 437 |
+
x_ = rearrange(
|
| 438 |
+
vis[i],
|
| 439 |
+
"b (h w) c -> b c h w",
|
| 440 |
+
h=self.patch_emb,
|
| 441 |
+
w=self.patch_emb,
|
| 442 |
+
).contiguous()
|
| 443 |
+
|
| 444 |
+
feats = self.ms_adaptor[i](x_)
|
| 445 |
+
|
| 446 |
+
vis_trans.append(feats)
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
fv_t = self.FPN(vis_trans[1:], x, True)
|
| 450 |
+
return vis, fv_t
|
| 451 |
+
|
| 452 |
+
class CISEN_vit(nn.Module, PyTorchModelHubMixin):
|
| 453 |
+
def __init__(self, cfg):
|
| 454 |
+
super().__init__()
|
| 455 |
+
# Vision & Text Encoder & Label Encoder
|
| 456 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
| 457 |
+
map_location="cpu").eval()
|
| 458 |
+
|
| 459 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, patch_size = build_model(clip_model.state_dict(), cfg.word_len)
|
| 460 |
+
self.backbone = backbone.float()
|
| 461 |
+
self.patch_emb = image_resolution // patch_size
|
| 462 |
+
cfg.image_resolution = image_resolution
|
| 463 |
+
cfg.input_size = image_resolution
|
| 464 |
+
cfg.heads = vision_heads // 32
|
| 465 |
+
cfg.emb_dim = vision_width
|
| 466 |
+
cfg.output_dim = embed_dim
|
| 467 |
+
|
| 468 |
+
# multi-scale adapter
|
| 469 |
+
# Multi-Modal FPN
|
| 470 |
+
self.FPN = ViTFPN(cfg, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 471 |
+
# Fined-grained Fusion
|
| 472 |
+
# self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
| 473 |
+
# d_model=cfg.vis_dim,
|
| 474 |
+
# nhead=cfg.num_head,
|
| 475 |
+
# dim_ffn=cfg.dim_ffn,
|
| 476 |
+
# dropout=cfg.dropout,
|
| 477 |
+
# return_intermediate=cfg.intermediate)
|
| 478 |
+
|
| 479 |
+
# image-text transformer
|
| 480 |
+
# self.trans = nn.Linear(1024, 1024)
|
| 481 |
+
self.ADP = Adapter(cfg.output_dim, 4)
|
| 482 |
+
# parameter
|
| 483 |
+
self.ratio = cfg.ratio
|
| 484 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 485 |
+
self.share_temperature = True
|
| 486 |
+
self.ce = nn.CrossEntropyLoss()
|
| 487 |
+
self.ms_adaptor = nn.ModuleList(
|
| 488 |
+
[
|
| 489 |
+
nn.Sequential(
|
| 490 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
| 491 |
+
nn.GroupNorm(32, cfg.emb_dim),
|
| 492 |
+
nn.GELU(),
|
| 493 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
| 494 |
+
),
|
| 495 |
+
nn.Sequential(
|
| 496 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
| 497 |
+
),
|
| 498 |
+
nn.Sequential(
|
| 499 |
+
nn.Identity(),
|
| 500 |
+
),
|
| 501 |
+
nn.Sequential(
|
| 502 |
+
nn.MaxPool2d(2),
|
| 503 |
+
),
|
| 504 |
+
|
| 505 |
+
]
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
self.ms_adaptor.apply(self.init_adaptor)
|
| 509 |
+
def init_adaptor(self, m):
|
| 510 |
+
if isinstance(m, nn.Conv2d):
|
| 511 |
+
lecun_normal_(m.weight)
|
| 512 |
+
if m.bias is not None:
|
| 513 |
+
nn.init.constant_(m.bias, 0)
|
| 514 |
+
elif isinstance(m, nn.GroupNorm):
|
| 515 |
+
nn.init.constant_(m.bias, 0)
|
| 516 |
+
nn.init.constant_(m.weight, 1.0)
|
| 517 |
+
elif isinstance(m, nn.ConvTranspose2d):
|
| 518 |
+
lecun_normal_(m.weight)
|
| 519 |
+
if m.bias is not None:
|
| 520 |
+
nn.init.zeros_(m.bias)
|
| 521 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def IT_loss(self, image_features, text_features):
|
| 525 |
+
# b, 1024 / b, 1024
|
| 526 |
+
batch = image_features.shape[0]
|
| 527 |
+
# # normalized features
|
| 528 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 529 |
+
keepdim=True)
|
| 530 |
+
text_features = text_features / text_features.norm(dim=-1,
|
| 531 |
+
keepdim=True)
|
| 532 |
+
|
| 533 |
+
# cosine similarity as logits
|
| 534 |
+
logit_scale = self.logit_scale.exp()
|
| 535 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 536 |
+
logits_per_text = logits_per_image.t()
|
| 537 |
+
|
| 538 |
+
# shape = [global_batch_size, global_batch_size]
|
| 539 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
| 540 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
return contrastive_loss
|
| 544 |
+
|
| 545 |
+
def forward(self, img, txt, stage):
|
| 546 |
+
|
| 547 |
+
if stage == '1st':
|
| 548 |
+
'''
|
| 549 |
+
img: b, 3, h, w
|
| 550 |
+
word: b, words
|
| 551 |
+
word_mask: b, words
|
| 552 |
+
mask: b, 1, h, w
|
| 553 |
+
stage: 1st or 2nd stage
|
| 554 |
+
'''
|
| 555 |
+
# padding mask used in decoder
|
| 556 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 557 |
+
|
| 558 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 559 |
+
# word: b, length, 512
|
| 560 |
+
# text: b, 1024
|
| 561 |
+
# image: b, 1024
|
| 562 |
+
vis, image = self.backbone.encode_image(img)
|
| 563 |
+
|
| 564 |
+
word, text = self.backbone.encode_text(txt)
|
| 565 |
+
|
| 566 |
+
x = self.ADP(image)
|
| 567 |
+
|
| 568 |
+
x = self.ratio * x + (1-self.ratio) * image
|
| 569 |
+
|
| 570 |
+
# b, 1024
|
| 571 |
+
# fq_t = self.FPN(vis, x)
|
| 572 |
+
#
|
| 573 |
+
# fv_t = self.gap(fq_t)
|
| 574 |
+
|
| 575 |
+
loss1 = self.IT_loss(x, text)
|
| 576 |
+
|
| 577 |
+
loss = loss1
|
| 578 |
+
|
| 579 |
+
ft = text
|
| 580 |
+
fi = x
|
| 581 |
+
fv = None
|
| 582 |
+
elif stage == '2nd':
|
| 583 |
+
'''
|
| 584 |
+
img: b, 3, h, w
|
| 585 |
+
word: b, words
|
| 586 |
+
word_mask: b, words
|
| 587 |
+
mask: b, 1, h, w
|
| 588 |
+
stage: 1st or 2nd stage
|
| 589 |
+
'''
|
| 590 |
+
# padding mask used in decoder
|
| 591 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 592 |
+
|
| 593 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 594 |
+
# word: b, length, 512
|
| 595 |
+
# text: b, 1024
|
| 596 |
+
# image: b, 1024
|
| 597 |
+
vis, image = self.backbone.encode_image(img)
|
| 598 |
+
|
| 599 |
+
word, text = self.backbone.encode_text(txt)
|
| 600 |
+
|
| 601 |
+
x = self.ADP(image)
|
| 602 |
+
|
| 603 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
| 604 |
+
# Construct multi-scale feats
|
| 605 |
+
vis_trans = []
|
| 606 |
+
for i in range(len(self.ms_adaptor)):
|
| 607 |
+
x_ = rearrange(
|
| 608 |
+
vis[i],
|
| 609 |
+
"b (h w) c -> b c h w",
|
| 610 |
+
h=self.patch_emb,
|
| 611 |
+
w=self.patch_emb,
|
| 612 |
+
).contiguous()
|
| 613 |
+
|
| 614 |
+
feats = self.ms_adaptor[i](x_)
|
| 615 |
+
|
| 616 |
+
vis_trans.append(feats)
|
| 617 |
+
|
| 618 |
+
# fq = self.FPN(vis, x_t)
|
| 619 |
+
fv_t = self.FPN(vis_trans[1:], x, False)
|
| 620 |
+
# fv_t = self.gap(fq_t)
|
| 621 |
+
|
| 622 |
+
# b, 1024
|
| 623 |
+
|
| 624 |
+
loss2 = self.IT_loss(fv_t, text)
|
| 625 |
+
|
| 626 |
+
loss = (loss2)
|
| 627 |
+
fv = fv_t
|
| 628 |
+
ft = text
|
| 629 |
+
fi = x
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
return loss, fv, fi, ft
|
| 633 |
+
|
| 634 |
+
def visualize(self, img, txt):
|
| 635 |
+
vis, image = self.backbone.encode_image(img)
|
| 636 |
+
word, text = self.backbone.encode_text(txt)
|
| 637 |
+
|
| 638 |
+
x = self.ADP(image)
|
| 639 |
+
|
| 640 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
| 641 |
+
# Construct multi-scale feats
|
| 642 |
+
vis_trans = []
|
| 643 |
+
for i in range(len(self.ms_adaptor)):
|
| 644 |
+
x_ = rearrange(
|
| 645 |
+
vis[i],
|
| 646 |
+
"b (h w) c -> b c h w",
|
| 647 |
+
h=self.patch_emb,
|
| 648 |
+
w=self.patch_emb,
|
| 649 |
+
).contiguous()
|
| 650 |
+
|
| 651 |
+
feats = self.ms_adaptor[i](x_)
|
| 652 |
+
|
| 653 |
+
vis_trans.append(feats)
|
| 654 |
+
|
| 655 |
+
# fq = self.FPN(vis, x_t)
|
| 656 |
+
fv_t = self.FPN(vis_trans[1:], x, True)
|
| 657 |
+
ft_t = self.FPN(vis_trans[1:], text, True)
|
| 658 |
+
return vis, fv_t, ft_t
|
| 659 |
+
|
| 660 |
+
class CISEN_rsvit_classification(nn.Module):
|
| 661 |
+
def __init__(self, cfg):
|
| 662 |
+
super().__init__()
|
| 663 |
+
# Vision & Text Encoder & Label Encoder
|
| 664 |
+
clip_model = torch.load(cfg.clip_pretrain,
|
| 665 |
+
map_location="cpu")
|
| 666 |
+
|
| 667 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, patch_size = build_model(clip_model, cfg.word_len)
|
| 668 |
+
self.backbone = backbone.float()
|
| 669 |
+
self.patch_emb = image_resolution // patch_size
|
| 670 |
+
num_classes_fc = 512
|
| 671 |
+
num_classes_output = 10
|
| 672 |
+
self.num_classes_fc = num_classes_fc # Number of classes for fully connected layer
|
| 673 |
+
self.num_classes_output = num_classes_output # Number of classes for output layer
|
| 674 |
+
|
| 675 |
+
# Add a fully connected layer
|
| 676 |
+
self.fc = nn.Linear(in_features=cfg.vis_dim, out_features=num_classes_fc)
|
| 677 |
+
|
| 678 |
+
# Add an output layer for multi-label classification
|
| 679 |
+
self.output_layer = nn.Linear(in_features=num_classes_fc, out_features=num_classes_output)
|
| 680 |
+
self.criterion = nn.BCEWithLogitsLoss()
|
| 681 |
+
cfg.image_resolution = image_resolution
|
| 682 |
+
cfg.input_size = image_resolution
|
| 683 |
+
cfg.heads = vision_heads // 32
|
| 684 |
+
cfg.emb_dim = vision_width
|
| 685 |
+
cfg.output_dim = embed_dim
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
def IT_loss(self, labels, labels_pre):
|
| 689 |
+
|
| 690 |
+
labels = labels.squeeze(1)
|
| 691 |
+
|
| 692 |
+
loss = self.criterion(labels_pre, labels)
|
| 693 |
+
return loss
|
| 694 |
+
|
| 695 |
+
def forward(self, img, labels):
|
| 696 |
+
_, image_features = self.backbone.encode_image(img)
|
| 697 |
+
# Fully connected layer
|
| 698 |
+
fc_output = self.fc(image_features)
|
| 699 |
+
# Apply ReLU activation function
|
| 700 |
+
fc_output = F.relu(fc_output)
|
| 701 |
+
# Output layer for multi-label classification
|
| 702 |
+
|
| 703 |
+
labels_pre = self.output_layer(fc_output)
|
| 704 |
+
|
| 705 |
+
loss2 = self.IT_loss(labels, labels_pre)
|
| 706 |
+
|
| 707 |
+
return labels_pre, loss2
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
class CISEN_new(nn.Module):
|
| 711 |
+
def __init__(self, cfg):
|
| 712 |
+
super().__init__()
|
| 713 |
+
# Vision & Text Encoder & Label Encoder
|
| 714 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
| 715 |
+
map_location="cpu").eval()
|
| 716 |
+
|
| 717 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, _ = build_model(clip_model.state_dict(), cfg.word_len)
|
| 718 |
+
self.backbone = backbone.float()
|
| 719 |
+
cfg.input_size = image_resolution
|
| 720 |
+
cfg.heads = vision_heads
|
| 721 |
+
cfg.emb_dim = vision_width * 32
|
| 722 |
+
cfg.output_dim = embed_dim
|
| 723 |
+
# Multi-Modal FPN
|
| 724 |
+
self.FPN = FPN(cfg, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 725 |
+
# Fined-grained Fusion
|
| 726 |
+
# self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
| 727 |
+
# d_model=cfg.vis_dim,
|
| 728 |
+
# nhead=cfg.num_head,
|
| 729 |
+
# dim_ffn=cfg.dim_ffn,
|
| 730 |
+
# dropout=cfg.dropout,
|
| 731 |
+
# return_intermediate=cfg.intermediate)
|
| 732 |
+
|
| 733 |
+
# image-text transformer
|
| 734 |
+
# self.trans = nn.Linear(1024, 1024)
|
| 735 |
+
self.ADP = Adapter(cfg.output_dim, 4)
|
| 736 |
+
self.gap = GAP((1,1))
|
| 737 |
+
# parameter
|
| 738 |
+
self.ratio = cfg.ratio
|
| 739 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 740 |
+
self.share_temperature = True
|
| 741 |
+
self.margin = 1
|
| 742 |
+
self.eps = 1e-3
|
| 743 |
+
self.ce = nn.CrossEntropyLoss()
|
| 744 |
+
#1st stage
|
| 745 |
+
self.lamda1 = cfg.lamda1
|
| 746 |
+
self.lamda2 = cfg.lamda2
|
| 747 |
+
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
| 748 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
| 749 |
+
|
| 750 |
+
|
| 751 |
+
def IT_loss(self, image_features, text_features):
|
| 752 |
+
# b, 1024 / b, 1024
|
| 753 |
+
batch = image_features.shape[0]
|
| 754 |
+
# # normalized features
|
| 755 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 756 |
+
keepdim=True)
|
| 757 |
+
text_features = text_features / text_features.norm(dim=-1,
|
| 758 |
+
keepdim=True)
|
| 759 |
+
|
| 760 |
+
# cosine similarity as logits
|
| 761 |
+
logit_scale = self.logit_scale.exp()
|
| 762 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 763 |
+
logits_per_text = logits_per_image.t()
|
| 764 |
+
|
| 765 |
+
# shape = [global_batch_size, global_batch_size]
|
| 766 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
| 767 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
| 768 |
+
|
| 769 |
+
|
| 770 |
+
return contrastive_loss
|
| 771 |
+
|
| 772 |
+
def forward(self, img, txt, stage):
|
| 773 |
+
|
| 774 |
+
if stage == '1st':
|
| 775 |
+
'''
|
| 776 |
+
img: b, 3, h, w
|
| 777 |
+
word: b, words
|
| 778 |
+
word_mask: b, words
|
| 779 |
+
mask: b, 1, h, w
|
| 780 |
+
stage: 1st or 2nd stage
|
| 781 |
+
'''
|
| 782 |
+
# padding mask used in decoder
|
| 783 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 784 |
+
|
| 785 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 786 |
+
# word: b, length, 512
|
| 787 |
+
# text: b, 1024
|
| 788 |
+
# image: b, 1024
|
| 789 |
+
vis, image = self.backbone.encode_image(img)
|
| 790 |
+
|
| 791 |
+
word, text = self.backbone.encode_text(txt)
|
| 792 |
+
|
| 793 |
+
x = self.ADP(image)
|
| 794 |
+
|
| 795 |
+
x = self.ratio * x + (1-self.ratio) * image
|
| 796 |
+
|
| 797 |
+
# b, 1024
|
| 798 |
+
# fq_t = self.FPN(vis, x)
|
| 799 |
+
#
|
| 800 |
+
# fv_t = self.gap(fq_t)
|
| 801 |
+
|
| 802 |
+
loss1 = self.IT_loss(x, text)
|
| 803 |
+
|
| 804 |
+
loss = loss1
|
| 805 |
+
|
| 806 |
+
ft = text
|
| 807 |
+
fi = x
|
| 808 |
+
fv = None
|
| 809 |
+
elif stage == '2nd':
|
| 810 |
+
'''
|
| 811 |
+
img: b, 3, h, w
|
| 812 |
+
word: b, words
|
| 813 |
+
word_mask: b, words
|
| 814 |
+
mask: b, 1, h, w
|
| 815 |
+
stage: 1st or 2nd stage
|
| 816 |
+
'''
|
| 817 |
+
# padding mask used in decoder
|
| 818 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 819 |
+
|
| 820 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 821 |
+
# word: b, length, 512
|
| 822 |
+
# text: b, 1024
|
| 823 |
+
# image: b, 1024
|
| 824 |
+
vis, image = self.backbone.encode_image(img)
|
| 825 |
+
|
| 826 |
+
word, text = self.backbone.encode_text(txt)
|
| 827 |
+
|
| 828 |
+
x = self.ADP(image)
|
| 829 |
+
|
| 830 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
| 831 |
+
|
| 832 |
+
# x_t = self.trans(x)
|
| 833 |
+
# fq = self.FPN(vis, x_t)
|
| 834 |
+
fq_t = self.FPN(vis, x)
|
| 835 |
+
|
| 836 |
+
fv_t = self.gap(fq_t)
|
| 837 |
+
|
| 838 |
+
# b, 1024
|
| 839 |
+
|
| 840 |
+
loss2 = self.IT_loss(fv_t, text)
|
| 841 |
+
|
| 842 |
+
loss = (loss2)
|
| 843 |
+
fv = fv_t
|
| 844 |
+
ft = text
|
| 845 |
+
fi = x
|
| 846 |
+
elif stage == '3rd':
|
| 847 |
+
'''
|
| 848 |
+
img: b, 3, h, w
|
| 849 |
+
word: b, words
|
| 850 |
+
word_mask: b, words
|
| 851 |
+
mask: b, 1, h, w
|
| 852 |
+
stage: 1st or 2nd stage
|
| 853 |
+
'''
|
| 854 |
+
# padding mask used in decoder
|
| 855 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 856 |
+
|
| 857 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 858 |
+
# word: b, length, 512
|
| 859 |
+
# text: b, 1024
|
| 860 |
+
# image: b, 1024
|
| 861 |
+
vis, image = self.backbone.encode_image(img)
|
| 862 |
+
|
| 863 |
+
word, text = self.backbone.encode_text(txt)
|
| 864 |
+
|
| 865 |
+
x = self.ADP(text)
|
| 866 |
+
ratio = 0.2
|
| 867 |
+
x = ratio * x + (1 - ratio) * text
|
| 868 |
+
|
| 869 |
+
# x_t = self.trans(x)
|
| 870 |
+
# fq = self.FPN(vis, x_t)
|
| 871 |
+
|
| 872 |
+
# b, 1024
|
| 873 |
+
loss1 = self.IT_loss(image, x)
|
| 874 |
+
|
| 875 |
+
|
| 876 |
+
loss = loss1
|
| 877 |
+
fv = None
|
| 878 |
+
ft = x
|
| 879 |
+
fi = image
|
| 880 |
+
elif stage == '4th':
|
| 881 |
+
'''
|
| 882 |
+
img: b, 3, h, w
|
| 883 |
+
word: b, words
|
| 884 |
+
word_mask: b, words
|
| 885 |
+
mask: b, 1, h, w
|
| 886 |
+
stage: 1st or 2nd stage
|
| 887 |
+
'''
|
| 888 |
+
# padding mask used in decoder
|
| 889 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 890 |
+
|
| 891 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 892 |
+
# word: b, length, 512
|
| 893 |
+
# text: b, 1024
|
| 894 |
+
# image: b, 1024
|
| 895 |
+
vis, image = self.backbone.encode_image(img)
|
| 896 |
+
word, text = self.backbone.encode_text(txt)
|
| 897 |
+
# x = self.ADP(image)
|
| 898 |
+
# ratio = 0.2
|
| 899 |
+
# x = ratio * x + (1 - ratio) * text
|
| 900 |
+
fq_t = self.FPN(vis, image)
|
| 901 |
+
|
| 902 |
+
fv_t = self.gap(fq_t)
|
| 903 |
+
ratio_1 = 0.2
|
| 904 |
+
# b, 1024
|
| 905 |
+
loss2 = self.IT_loss(fv_t, text)
|
| 906 |
+
|
| 907 |
+
loss = loss2
|
| 908 |
+
fv = fv_t
|
| 909 |
+
fi = None
|
| 910 |
+
ft = text
|
| 911 |
+
elif stage == '5th':
|
| 912 |
+
'''
|
| 913 |
+
img: b, 3, h, w
|
| 914 |
+
word: b, words
|
| 915 |
+
word_mask: b, words
|
| 916 |
+
mask: b, 1, h, w
|
| 917 |
+
stage: 1st or 2nd stage
|
| 918 |
+
'''
|
| 919 |
+
# padding mask used in decoder
|
| 920 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 921 |
+
|
| 922 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 923 |
+
# word: b, length, 512
|
| 924 |
+
# text: b, 1024
|
| 925 |
+
# image: b, 1024
|
| 926 |
+
vis, image = self.backbone.encode_image(img)
|
| 927 |
+
word, text = self.backbone.encode_text(txt)
|
| 928 |
+
x = self.ADP(image)
|
| 929 |
+
ratio = 0.2
|
| 930 |
+
x = ratio * x + (1 - ratio) * image
|
| 931 |
+
|
| 932 |
+
y = self.ADP_t(text)
|
| 933 |
+
ratio_1 = 0.2
|
| 934 |
+
y = ratio * y + (1 - ratio_1) * text
|
| 935 |
+
|
| 936 |
+
fq_t = self.FPN(vis, image)
|
| 937 |
+
|
| 938 |
+
fv_t = self.gap(fq_t)
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
# b, 1024
|
| 942 |
+
|
| 943 |
+
loss2 = self.IT_loss(fv_t, y)
|
| 944 |
+
|
| 945 |
+
loss = loss2
|
| 946 |
+
fv = fv_t
|
| 947 |
+
fi = x
|
| 948 |
+
ft = y
|
| 949 |
+
|
| 950 |
+
return loss, fv, fi, ft
|
| 951 |
+
|
| 952 |
+
class CISEN_lclip(nn.Module):
|
| 953 |
+
def __init__(self, cfg):
|
| 954 |
+
super().__init__()
|
| 955 |
+
# Vision & Text Encoder & Label Encoder
|
| 956 |
+
clip_model = torch.load(cfg.clip_pretrain,
|
| 957 |
+
map_location="cpu")
|
| 958 |
+
# print(type(clip_model))
|
| 959 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, _ = build_lclip_model(clip_model, load_from_clip=True)
|
| 960 |
+
self.backbone = backbone.float()
|
| 961 |
+
cfg.input_size = image_resolution
|
| 962 |
+
cfg.heads = vision_heads // 32
|
| 963 |
+
cfg.emb_dim = vision_width
|
| 964 |
+
cfg.output_dim = embed_dim
|
| 965 |
+
# Multi-Modal FPN
|
| 966 |
+
self.FPN = FPN(cfg, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 967 |
+
# Fined-grained Fusion
|
| 968 |
+
# self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
| 969 |
+
# d_model=cfg.vis_dim,
|
| 970 |
+
# nhead=cfg.num_head,
|
| 971 |
+
# dim_ffn=cfg.dim_ffn,
|
| 972 |
+
# dropout=cfg.dropout,
|
| 973 |
+
# return_intermediate=cfg.intermediate)
|
| 974 |
+
|
| 975 |
+
# image-text transformer
|
| 976 |
+
# self.trans = nn.Linear(1024, 1024)
|
| 977 |
+
self.ADP = Adapter(cfg.output_dim, 4)
|
| 978 |
+
self.gap = GAP((1,1))
|
| 979 |
+
# parameter
|
| 980 |
+
self.ratio = cfg.ratio
|
| 981 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 982 |
+
self.share_temperature = True
|
| 983 |
+
self.margin = 1
|
| 984 |
+
self.eps = 1e-3
|
| 985 |
+
self.ce = nn.CrossEntropyLoss()
|
| 986 |
+
#1st stage
|
| 987 |
+
self.lamda1 = cfg.lamda1
|
| 988 |
+
self.lamda2 = cfg.lamda2
|
| 989 |
+
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
| 990 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
| 991 |
+
|
| 992 |
+
|
| 993 |
+
def IT_loss(self, image_features, text_features):
|
| 994 |
+
# b, 1024 / b, 1024
|
| 995 |
+
batch = image_features.shape[0]
|
| 996 |
+
# # normalized features
|
| 997 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 998 |
+
keepdim=True)
|
| 999 |
+
text_features = text_features / text_features.norm(dim=-1,
|
| 1000 |
+
keepdim=True)
|
| 1001 |
+
|
| 1002 |
+
# cosine similarity as logits
|
| 1003 |
+
logit_scale = self.logit_scale.exp()
|
| 1004 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 1005 |
+
logits_per_text = logits_per_image.t()
|
| 1006 |
+
|
| 1007 |
+
# shape = [global_batch_size, global_batch_size]
|
| 1008 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
| 1009 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
| 1010 |
+
|
| 1011 |
+
|
| 1012 |
+
return contrastive_loss
|
| 1013 |
+
|
| 1014 |
+
def forward(self, img, txt, stage):
|
| 1015 |
+
|
| 1016 |
+
if stage == '1st':
|
| 1017 |
+
'''
|
| 1018 |
+
img: b, 3, h, w
|
| 1019 |
+
word: b, words
|
| 1020 |
+
word_mask: b, words
|
| 1021 |
+
mask: b, 1, h, w
|
| 1022 |
+
stage: 1st or 2nd stage
|
| 1023 |
+
'''
|
| 1024 |
+
# padding mask used in decoder
|
| 1025 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 1026 |
+
|
| 1027 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 1028 |
+
# word: b, length, 512
|
| 1029 |
+
# text: b, 1024
|
| 1030 |
+
# image: b, 1024
|
| 1031 |
+
vis, image = self.backbone.encode_image(img)
|
| 1032 |
+
|
| 1033 |
+
text = self.backbone.encode_text(txt)
|
| 1034 |
+
|
| 1035 |
+
x = self.ADP(image)
|
| 1036 |
+
|
| 1037 |
+
x = self.ratio * x + (1-self.ratio) * image
|
| 1038 |
+
|
| 1039 |
+
# b, 1024
|
| 1040 |
+
# fq_t = self.FPN(vis, x)
|
| 1041 |
+
#
|
| 1042 |
+
# fv_t = self.gap(fq_t)
|
| 1043 |
+
|
| 1044 |
+
loss1 = self.IT_loss(x, text)
|
| 1045 |
+
|
| 1046 |
+
loss = loss1
|
| 1047 |
+
|
| 1048 |
+
ft = text
|
| 1049 |
+
fi = x
|
| 1050 |
+
fv = None
|
| 1051 |
+
elif stage == '2nd':
|
| 1052 |
+
'''
|
| 1053 |
+
img: b, 3, h, w
|
| 1054 |
+
word: b, words
|
| 1055 |
+
word_mask: b, words
|
| 1056 |
+
mask: b, 1, h, w
|
| 1057 |
+
stage: 1st or 2nd stage
|
| 1058 |
+
'''
|
| 1059 |
+
# padding mask used in decoder
|
| 1060 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 1061 |
+
|
| 1062 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 1063 |
+
# word: b, length, 512
|
| 1064 |
+
# text: b, 1024
|
| 1065 |
+
# image: b, 1024
|
| 1066 |
+
vis, image = self.backbone.encode_image(img)
|
| 1067 |
+
|
| 1068 |
+
word, text = self.backbone.encode_text(txt)
|
| 1069 |
+
|
| 1070 |
+
x = self.ADP(image)
|
| 1071 |
+
|
| 1072 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
| 1073 |
+
|
| 1074 |
+
# x_t = self.trans(x)
|
| 1075 |
+
# fq = self.FPN(vis, x_t)
|
| 1076 |
+
fq_t = self.FPN(vis, x)
|
| 1077 |
+
|
| 1078 |
+
fv_t = self.gap(fq_t)
|
| 1079 |
+
|
| 1080 |
+
# b, 1024
|
| 1081 |
+
|
| 1082 |
+
loss2 = self.IT_loss(fv_t, text)
|
| 1083 |
+
|
| 1084 |
+
loss = (loss2)
|
| 1085 |
+
fv = fv_t
|
| 1086 |
+
ft = text
|
| 1087 |
+
fi = x
|
| 1088 |
+
elif stage == '3rd':
|
| 1089 |
+
'''
|
| 1090 |
+
img: b, 3, h, w
|
| 1091 |
+
word: b, words
|
| 1092 |
+
word_mask: b, words
|
| 1093 |
+
mask: b, 1, h, w
|
| 1094 |
+
stage: 1st or 2nd stage
|
| 1095 |
+
'''
|
| 1096 |
+
# padding mask used in decoder
|
| 1097 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 1098 |
+
|
| 1099 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 1100 |
+
# word: b, length, 512
|
| 1101 |
+
# text: b, 1024
|
| 1102 |
+
# image: b, 1024
|
| 1103 |
+
vis, image = self.backbone.encode_image(img)
|
| 1104 |
+
|
| 1105 |
+
text = self.backbone.encode_text(txt)
|
| 1106 |
+
|
| 1107 |
+
x = self.ADP(text)
|
| 1108 |
+
ratio = 0.2
|
| 1109 |
+
x = ratio * x + (1 - ratio) * text
|
| 1110 |
+
|
| 1111 |
+
# x_t = self.trans(x)
|
| 1112 |
+
# fq = self.FPN(vis, x_t)
|
| 1113 |
+
|
| 1114 |
+
# b, 1024
|
| 1115 |
+
loss1 = self.IT_loss(image, x)
|
| 1116 |
+
|
| 1117 |
+
|
| 1118 |
+
loss = loss1
|
| 1119 |
+
fv = None
|
| 1120 |
+
ft = x
|
| 1121 |
+
fi = image
|
| 1122 |
+
elif stage == '4th':
|
| 1123 |
+
'''
|
| 1124 |
+
img: b, 3, h, w
|
| 1125 |
+
word: b, words
|
| 1126 |
+
word_mask: b, words
|
| 1127 |
+
mask: b, 1, h, w
|
| 1128 |
+
stage: 1st or 2nd stage
|
| 1129 |
+
'''
|
| 1130 |
+
# padding mask used in decoder
|
| 1131 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 1132 |
+
|
| 1133 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 1134 |
+
# word: b, length, 512
|
| 1135 |
+
# text: b, 1024
|
| 1136 |
+
# image: b, 1024
|
| 1137 |
+
vis, image = self.backbone.encode_image(img)
|
| 1138 |
+
word, text = self.backbone.encode_text(txt)
|
| 1139 |
+
# x = self.ADP(image)
|
| 1140 |
+
# ratio = 0.2
|
| 1141 |
+
# x = ratio * x + (1 - ratio) * text
|
| 1142 |
+
fq_t = self.FPN(vis, image)
|
| 1143 |
+
|
| 1144 |
+
fv_t = self.gap(fq_t)
|
| 1145 |
+
ratio_1 = 0.2
|
| 1146 |
+
# b, 1024
|
| 1147 |
+
loss2 = self.IT_loss(fv_t, text)
|
| 1148 |
+
|
| 1149 |
+
loss = loss2
|
| 1150 |
+
fv = fv_t
|
| 1151 |
+
fi = None
|
| 1152 |
+
ft = text
|
| 1153 |
+
elif stage == '5th':
|
| 1154 |
+
'''
|
| 1155 |
+
img: b, 3, h, w
|
| 1156 |
+
word: b, words
|
| 1157 |
+
word_mask: b, words
|
| 1158 |
+
mask: b, 1, h, w
|
| 1159 |
+
stage: 1st or 2nd stage
|
| 1160 |
+
'''
|
| 1161 |
+
# padding mask used in decoder
|
| 1162 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 1163 |
+
|
| 1164 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 1165 |
+
# word: b, length, 512
|
| 1166 |
+
# text: b, 1024
|
| 1167 |
+
# image: b, 1024
|
| 1168 |
+
vis, image = self.backbone.encode_image(img)
|
| 1169 |
+
word, text = self.backbone.encode_text(txt)
|
| 1170 |
+
x = self.ADP(image)
|
| 1171 |
+
ratio = 0.2
|
| 1172 |
+
x = ratio * x + (1 - ratio) * image
|
| 1173 |
+
|
| 1174 |
+
y = self.ADP_t(text)
|
| 1175 |
+
ratio_1 = 0.2
|
| 1176 |
+
y = ratio * y + (1 - ratio_1) * text
|
| 1177 |
+
|
| 1178 |
+
fq_t = self.FPN(vis, image)
|
| 1179 |
+
|
| 1180 |
+
fv_t = self.gap(fq_t)
|
| 1181 |
+
|
| 1182 |
+
|
| 1183 |
+
# b, 1024
|
| 1184 |
+
|
| 1185 |
+
loss2 = self.IT_loss(fv_t, y)
|
| 1186 |
+
|
| 1187 |
+
loss = loss2
|
| 1188 |
+
fv = fv_t
|
| 1189 |
+
fi = x
|
| 1190 |
+
ft = y
|
| 1191 |
+
|
| 1192 |
+
return loss, fv, fi, ft
|
| 1193 |
+
|
| 1194 |
+
class GeoRSCLIP(nn.Module):
|
| 1195 |
+
def __init__(self, cfg):
|
| 1196 |
+
super().__init__()
|
| 1197 |
+
# Vision & Text Encoder & Label Encoder
|
| 1198 |
+
clip_model = torch.load(cfg.clip_pretrain,
|
| 1199 |
+
map_location="cpu")
|
| 1200 |
+
|
| 1201 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, patch_size = build_model(clip_model, cfg.word_len)
|
| 1202 |
+
self.backbone = backbone.float()
|
| 1203 |
+
|
| 1204 |
+
def forward(self, img, txt, stage):
|
| 1205 |
+
|
| 1206 |
+
|
| 1207 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 1208 |
+
|
| 1209 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 1210 |
+
# word: b, length, 512
|
| 1211 |
+
# text: b, 1024
|
| 1212 |
+
# image: b, 1024
|
| 1213 |
+
vis, image = self.backbone.encode_image(img)
|
| 1214 |
+
|
| 1215 |
+
word, text = self.backbone.encode_text(txt)
|
| 1216 |
+
|
| 1217 |
+
loss = None
|
| 1218 |
+
|
| 1219 |
+
ft = text
|
| 1220 |
+
fi = image
|
| 1221 |
+
fv = None
|
| 1222 |
+
return loss, fv, fi, ft
|
| 1223 |
+
|
| 1224 |
+
class CISEN(nn.Module):
|
| 1225 |
+
def __init__(self, cfg):
|
| 1226 |
+
super().__init__()
|
| 1227 |
+
# Vision & Text Encoder & Label Encoder
|
| 1228 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
| 1229 |
+
map_location="cpu").eval()
|
| 1230 |
+
|
| 1231 |
+
self.backbone = build_model(clip_model.state_dict(), cfg.word_len).float()
|
| 1232 |
+
# Multi-Modal FPN
|
| 1233 |
+
self.FPN = FPN(cfg, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 1234 |
+
# Fined-grained Fusion
|
| 1235 |
+
self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
| 1236 |
+
d_model=cfg.vis_dim,
|
| 1237 |
+
nhead=cfg.num_head,
|
| 1238 |
+
dim_ffn=cfg.dim_ffn,
|
| 1239 |
+
dropout=cfg.dropout,
|
| 1240 |
+
return_intermediate=cfg.intermediate)
|
| 1241 |
+
# adaptively aggretation
|
| 1242 |
+
self.ASFF = AdaptiveSpatialFeatureFusion(cfg, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 1243 |
+
# text projector
|
| 1244 |
+
self.projT = Text_Projector(cfg, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 1245 |
+
# image projector
|
| 1246 |
+
# self.projI = Image_Projector(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 1247 |
+
# parameter
|
| 1248 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 1249 |
+
self.multi_label_logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 1250 |
+
self.share_temperature = True
|
| 1251 |
+
self.margin = 1
|
| 1252 |
+
self.eps = 1e-3
|
| 1253 |
+
self.ce = nn.CrossEntropyLoss()
|
| 1254 |
+
#1st stage
|
| 1255 |
+
self.lamda1 = cfg.lamda1
|
| 1256 |
+
self.lamda2 = cfg.lamda2
|
| 1257 |
+
self.beta1 = cfg.beta1
|
| 1258 |
+
self.beta2 = cfg.beta2
|
| 1259 |
+
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
| 1260 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
| 1261 |
+
#2nd stage
|
| 1262 |
+
self.pos_samples = cfg.pos_samples
|
| 1263 |
+
self.neg_samples = cfg.neg_samples
|
| 1264 |
+
|
| 1265 |
+
def IT_loss(self, image_features, text_features):
|
| 1266 |
+
# b, 1024 / b, 1024
|
| 1267 |
+
batch = image_features.shape[0]
|
| 1268 |
+
# # normalized features
|
| 1269 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 1270 |
+
keepdim=True)
|
| 1271 |
+
text_features = text_features / text_features.norm(dim=-1,
|
| 1272 |
+
keepdim=True)
|
| 1273 |
+
|
| 1274 |
+
# cosine similarity as logits
|
| 1275 |
+
logit_scale = self.logit_scale.exp()
|
| 1276 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 1277 |
+
logits_per_text = logits_per_image.t()
|
| 1278 |
+
|
| 1279 |
+
# shape = [global_batch_size, global_batch_size]
|
| 1280 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
| 1281 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
| 1282 |
+
|
| 1283 |
+
|
| 1284 |
+
return contrastive_loss
|
| 1285 |
+
|
| 1286 |
+
def IET_loss(self, image_features, text_features, pos_samples, beta):
|
| 1287 |
+
# b, 1024 / b, 1024
|
| 1288 |
+
# # normalized features
|
| 1289 |
+
image_features = [image_feature / image_feature.norm(dim=-1,
|
| 1290 |
+
keepdim=True) for image_feature in image_features]
|
| 1291 |
+
text_features = text_features / text_features.norm(dim=-1,
|
| 1292 |
+
keepdim=True)
|
| 1293 |
+
|
| 1294 |
+
# cosine similarity as logits
|
| 1295 |
+
logit_scale = self.logit_scale.exp()
|
| 1296 |
+
|
| 1297 |
+
# logits_per_image = [logit_scale * image_feature @ text_features.t() for image_feature in image_features]
|
| 1298 |
+
logits_per_image = [logit_scale * torch.sum(torch.mul(image_feature, text_features),1) for image_feature in image_features]
|
| 1299 |
+
logits_per_image = torch.stack(logits_per_image).t()
|
| 1300 |
+
b = logits_per_image.shape[0]
|
| 1301 |
+
loss1 = torch.norm(text_features - image_features[0])
|
| 1302 |
+
positive_tagsT = torch.zeros(b,len(image_features)).to(text_features.device)
|
| 1303 |
+
negative_tagsT = torch.zeros(b,len(image_features)).to(text_features.device)
|
| 1304 |
+
positive_tagsT[:, 0 : pos_samples + 1] = 1
|
| 1305 |
+
negative_tagsT[:, pos_samples + 1 : -1] = 1
|
| 1306 |
+
|
| 1307 |
+
maskT = positive_tagsT.unsqueeze(1) * negative_tagsT.unsqueeze(-1)
|
| 1308 |
+
pos_score_matT = logits_per_image * positive_tagsT
|
| 1309 |
+
neg_score_matT = logits_per_image * negative_tagsT
|
| 1310 |
+
IW_pos3T = pos_score_matT.unsqueeze(1)
|
| 1311 |
+
IW_neg3T = neg_score_matT.unsqueeze(-1)
|
| 1312 |
+
OT = 1 + IW_neg3T - IW_pos3T
|
| 1313 |
+
O_maskT = maskT * OT
|
| 1314 |
+
diffT = torch.clamp(O_maskT, 0)
|
| 1315 |
+
violationT = torch.sign(diffT).sum(1).sum(1)
|
| 1316 |
+
diffT = diffT.sum(1).sum(1)
|
| 1317 |
+
lossT = torch.mean(diffT / (violationT + self.eps))
|
| 1318 |
+
loss = beta * loss1 + lossT
|
| 1319 |
+
|
| 1320 |
+
return loss
|
| 1321 |
+
|
| 1322 |
+
def test_IET_loss(self, image_features, text_features, pos_samples, beta1, beta2):
|
| 1323 |
+
# text_features: enhanced_features
|
| 1324 |
+
# b, 1024 / b, 1024
|
| 1325 |
+
# # normalized features
|
| 1326 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 1327 |
+
keepdim=True)
|
| 1328 |
+
text_features = text_features / text_features.norm(dim=-1,
|
| 1329 |
+
keepdim=True)
|
| 1330 |
+
image_features = image_features.unsqueeze(1)
|
| 1331 |
+
# cosine similarity as logits
|
| 1332 |
+
logit_scale = self.logit_scale.exp()
|
| 1333 |
+
# image_features = image_features.expand(-1, text_features.shape[1], -1)
|
| 1334 |
+
logits_per_image = logit_scale * torch.matmul(image_features, text_features.transpose(1, 2))
|
| 1335 |
+
logits_per_image = logits_per_image.squeeze(1)
|
| 1336 |
+
# logits_per_image = logit_scale * image_features @ text_features.t()
|
| 1337 |
+
# logits_per_image = [logit_scale * image_feature @ text_features.t() for image_feature in image_features]
|
| 1338 |
+
|
| 1339 |
+
b = logits_per_image.shape[0]
|
| 1340 |
+
|
| 1341 |
+
# loss1 = torch.norm(text_features[:, 0, :] - image_features.squeeze(1))
|
| 1342 |
+
|
| 1343 |
+
positive_tagsT = torch.zeros(b, text_features.shape[1]).to(text_features.device)
|
| 1344 |
+
negative_tagsT = torch.zeros(b, text_features.shape[1]).to(text_features.device)
|
| 1345 |
+
positive_tagsT[:, 0 : pos_samples + 1] = 1
|
| 1346 |
+
negative_tagsT[:, pos_samples + 1 : -1] = 1
|
| 1347 |
+
|
| 1348 |
+
maskT = positive_tagsT.unsqueeze(1) * negative_tagsT.unsqueeze(-1)
|
| 1349 |
+
pos_score_matT = logits_per_image * positive_tagsT
|
| 1350 |
+
neg_score_matT = logits_per_image * negative_tagsT
|
| 1351 |
+
IW_pos3T = pos_score_matT.unsqueeze(1)
|
| 1352 |
+
IW_neg3T = neg_score_matT.unsqueeze(-1)
|
| 1353 |
+
OT = 1 + IW_neg3T - IW_pos3T
|
| 1354 |
+
O_maskT = maskT * OT
|
| 1355 |
+
diffT = torch.clamp(O_maskT, 0)
|
| 1356 |
+
violationT = torch.sign(diffT).sum(1).sum(1)
|
| 1357 |
+
diffT = diffT.sum(1).sum(1)
|
| 1358 |
+
lossT = torch.mean(diffT / (violationT + self.eps))
|
| 1359 |
+
# loss = beta1 * loss1 + beta2 * lossT
|
| 1360 |
+
loss = lossT
|
| 1361 |
+
return loss
|
| 1362 |
+
|
| 1363 |
+
def test_IT_loss(self, image_features, text_features):
|
| 1364 |
+
# b, 1024 / b, 1024
|
| 1365 |
+
batch = image_features.shape[0]
|
| 1366 |
+
# # normalized features
|
| 1367 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 1368 |
+
keepdim=True)
|
| 1369 |
+
text_features = text_features / text_features.norm(dim=-1,
|
| 1370 |
+
keepdim=True)
|
| 1371 |
+
image_features = image_features.unsqueeze(1)
|
| 1372 |
+
# cosine similarity as logits
|
| 1373 |
+
logit_scale = self.logit_scale.exp()
|
| 1374 |
+
logits_per_image = logit_scale * torch.matmul(image_features, text_features.transpose(1, 2))
|
| 1375 |
+
logits_per_image = logits_per_image.squeeze(1)
|
| 1376 |
+
|
| 1377 |
+
# shape = [global_batch_size, global_batch_size]
|
| 1378 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
| 1379 |
+
contrastive_loss = self.ce(logits_per_image, contrastive_labels)
|
| 1380 |
+
|
| 1381 |
+
|
| 1382 |
+
return contrastive_loss
|
| 1383 |
+
|
| 1384 |
+
def test_forward(self, img, txt):
|
| 1385 |
+
'''
|
| 1386 |
+
img: b, 3, h, w
|
| 1387 |
+
word: b, words
|
| 1388 |
+
word_mask: b, words
|
| 1389 |
+
mask: b, 1, h, w
|
| 1390 |
+
stage: 1st or 2nd stage
|
| 1391 |
+
'''
|
| 1392 |
+
|
| 1393 |
+
# padding mask used in decoder
|
| 1394 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 1395 |
+
|
| 1396 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 1397 |
+
# word: b, length, 512
|
| 1398 |
+
# state: b, 1024
|
| 1399 |
+
# image: b, 512
|
| 1400 |
+
vis, image = self.backbone.encode_image(img)
|
| 1401 |
+
|
| 1402 |
+
word, text = self.backbone.encode_text(txt)
|
| 1403 |
+
|
| 1404 |
+
fq = self.FPN(vis, text)
|
| 1405 |
+
|
| 1406 |
+
b, c, h, w = fq.size()
|
| 1407 |
+
# b, 512, 14, 14
|
| 1408 |
+
ff = self.FGFusion(fq, word, pad_mask)
|
| 1409 |
+
ff = ff.reshape(b, c, h, w)
|
| 1410 |
+
|
| 1411 |
+
f2 = self.avg(ff)
|
| 1412 |
+
fi = image.unsqueeze(-1).unsqueeze(-1)
|
| 1413 |
+
fv = self.ASFF(fi, f2)
|
| 1414 |
+
fi = fi.squeeze(-1).squeeze(-1)
|
| 1415 |
+
# b, 1024
|
| 1416 |
+
ft = self.projT(text)
|
| 1417 |
+
loss1 = self.IT_loss(fi, ft)
|
| 1418 |
+
loss2 = self.IT_loss(fv, ft)
|
| 1419 |
+
loss = self.lamda1 * loss1 + self.lamda2 * loss2
|
| 1420 |
+
|
| 1421 |
+
return loss, fv, ft, fi
|
| 1422 |
+
|
| 1423 |
+
def forward(self, img, txt, stage):
|
| 1424 |
+
|
| 1425 |
+
if stage == '1st':
|
| 1426 |
+
'''
|
| 1427 |
+
img: b, 3, h, w
|
| 1428 |
+
word: b, words
|
| 1429 |
+
word_mask: b, words
|
| 1430 |
+
mask: b, 1, h, w
|
| 1431 |
+
stage: 1st or 2nd stage
|
| 1432 |
+
'''
|
| 1433 |
+
# padding mask used in decoder
|
| 1434 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 1435 |
+
|
| 1436 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 1437 |
+
# word: b, length, 512
|
| 1438 |
+
# state: b, 1024
|
| 1439 |
+
# image: b, 512
|
| 1440 |
+
vis, image = self.backbone.encode_image(img)
|
| 1441 |
+
|
| 1442 |
+
word, text = self.backbone.encode_text(txt)
|
| 1443 |
+
|
| 1444 |
+
fq = self.FPN(vis, text)
|
| 1445 |
+
|
| 1446 |
+
b, c, h, w = fq.size()
|
| 1447 |
+
# b, 512, 14, 14
|
| 1448 |
+
ff = self.FGFusion(fq, word, pad_mask)
|
| 1449 |
+
ff = ff.reshape(b, c, h, w)
|
| 1450 |
+
|
| 1451 |
+
f2 = self.avg(ff)
|
| 1452 |
+
fi = image.unsqueeze(-1).unsqueeze(-1)
|
| 1453 |
+
fv = self.ASFF(fi, f2)
|
| 1454 |
+
fi = fi.squeeze(-1).squeeze(-1)
|
| 1455 |
+
# b, 1024
|
| 1456 |
+
ft = self.projT(text)
|
| 1457 |
+
loss1 = self.IT_loss(fi, ft)
|
| 1458 |
+
loss2 = self.IT_loss(fv, ft)
|
| 1459 |
+
loss = self.lamda1 * loss1 + self.lamda2 * loss2
|
| 1460 |
+
|
| 1461 |
+
elif stage == '2nd':
|
| 1462 |
+
"""
|
| 1463 |
+
txt: b, num, words
|
| 1464 |
+
img: b, 3, h, w
|
| 1465 |
+
"""
|
| 1466 |
+
|
| 1467 |
+
# txt = b * num, word
|
| 1468 |
+
b, num, l = txt.shape[0], txt.shape[1], txt.shape[2]
|
| 1469 |
+
txt = txt.view(-1, txt.size(-1))
|
| 1470 |
+
|
| 1471 |
+
# padding mask used in decoder
|
| 1472 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 1473 |
+
|
| 1474 |
+
b = img.shape[0]
|
| 1475 |
+
vis, image = self.backbone.encode_image(img)
|
| 1476 |
+
word, text = self.backbone.encode_text(txt)
|
| 1477 |
+
|
| 1478 |
+
fq = self.FPN(vis, text)
|
| 1479 |
+
# b, 512, 14, 14 (C4)
|
| 1480 |
+
|
| 1481 |
+
b, c, h, w = fq.size()
|
| 1482 |
+
# b, 512, 14, 14
|
| 1483 |
+
ff = self.FGFusion(fq, word, pad_mask)
|
| 1484 |
+
ff = ff.reshape(b, c, h, w)
|
| 1485 |
+
|
| 1486 |
+
f2 = self.avg(ff)
|
| 1487 |
+
fi = image.unsqueeze(-1).unsqueeze(-1)
|
| 1488 |
+
fi_ = fi.repeat(int(f2.shape[0] / fi.shape[0]), 1, 1, 1)
|
| 1489 |
+
|
| 1490 |
+
fv = self.ASFF(fi_, f2)
|
| 1491 |
+
fi = fi.squeeze(-1).squeeze(-1)
|
| 1492 |
+
# fi_ = fi_.squeeze(-1).squeeze(-1)
|
| 1493 |
+
# b, 1024
|
| 1494 |
+
ft = text.view(img.shape[0], int(text.shape[0] / img.shape[0]), -1)[:, 0, :]
|
| 1495 |
+
fv = fv.view(ft.shape[0], int(text.shape[0] / ft.shape[0]), fv.shape[1])
|
| 1496 |
+
loss = self.test_IET_loss(fi, fv, self.pos_samples, self.beta1, self.beta2)
|
| 1497 |
+
|
| 1498 |
+
|
| 1499 |
+
elif stage == 'test':
|
| 1500 |
+
"""
|
| 1501 |
+
txt: b, num, words
|
| 1502 |
+
img: b, 3, h, w
|
| 1503 |
+
"""
|
| 1504 |
+
txt = txt.permute(1, 0, 2)
|
| 1505 |
+
|
| 1506 |
+
# txt = b * num, word
|
| 1507 |
+
# txt = txt.view(-1, txt.size(-1))
|
| 1508 |
+
|
| 1509 |
+
# padding mask used in decoder
|
| 1510 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 1511 |
+
|
| 1512 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 1513 |
+
# word: b, length, 512
|
| 1514 |
+
# state: b, 1024
|
| 1515 |
+
# image: b, 512
|
| 1516 |
+
b = img.shape[0]
|
| 1517 |
+
words = []
|
| 1518 |
+
texts = []
|
| 1519 |
+
vis, image = self.backbone.encode_image(img)
|
| 1520 |
+
for i in range(txt.shape[0]):
|
| 1521 |
+
word, text = self.backbone.encode_text(txt[i])
|
| 1522 |
+
words.append(word)
|
| 1523 |
+
texts.append(text)
|
| 1524 |
+
|
| 1525 |
+
fvn = []
|
| 1526 |
+
# b, 512, 14, 14 (C4)
|
| 1527 |
+
for i in range(txt.shape[0]):
|
| 1528 |
+
fq = self.FPN(vis, texts[i])
|
| 1529 |
+
|
| 1530 |
+
b, c, h, w = fq.size()
|
| 1531 |
+
# b, 512, 14, 14
|
| 1532 |
+
ff = self.FGFusion(fq, words[i], pad_mask[i, :, :])
|
| 1533 |
+
ff = ff.reshape(b, c, h, w)
|
| 1534 |
+
|
| 1535 |
+
f2 = self.avg(ff)
|
| 1536 |
+
fi = image.unsqueeze(-1).unsqueeze(-1)
|
| 1537 |
+
fv = self.ASFF(fi, f2)
|
| 1538 |
+
fi = fi.squeeze(-1).squeeze(-1)
|
| 1539 |
+
fvn.append(fv)
|
| 1540 |
+
|
| 1541 |
+
# b, 1024
|
| 1542 |
+
ft = self.projT(texts[0])
|
| 1543 |
+
loss = self.IET_loss(fvn, ft, self.pos_samples, self.beta)
|
| 1544 |
+
fv = fvn
|
| 1545 |
+
|
| 1546 |
+
|
| 1547 |
+
else:
|
| 1548 |
+
print('stage should be either 1st or 2nd or test')
|
| 1549 |
+
|
| 1550 |
+
|
| 1551 |
+
|
| 1552 |
+
# labels = torch.ones(image.shape[0], image.shape[0]).to(image.device)
|
| 1553 |
+
# labels[:,-1] = 0
|
| 1554 |
+
# labels[3, :] = 0
|
| 1555 |
+
|
| 1556 |
+
|
| 1557 |
+
# out = self.avg(fq)
|
| 1558 |
+
# out = out.squeeze(-1).squeeze(-1)
|
| 1559 |
+
# out = self.fc(out)
|
| 1560 |
+
|
| 1561 |
+
return loss, fv, fi, ft
|
| 1562 |
+
|
| 1563 |
+
|
| 1564 |
+
|
| 1565 |
+
class CRIS(nn.Module):
|
| 1566 |
+
def __init__(self, cfg):
|
| 1567 |
+
super().__init__()
|
| 1568 |
+
# Vision & Text Encoder & Label Encoder
|
| 1569 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
| 1570 |
+
map_location="cpu").eval()
|
| 1571 |
+
|
| 1572 |
+
self.backbone, _, _, _, _ = build_model(clip_model.state_dict(), cfg.word_len)
|
| 1573 |
+
self.backbone = self.backbone.float()
|
| 1574 |
+
self.Label_encoder = build_promptlearner(clip_model.state_dict()).float()
|
| 1575 |
+
self.Label_encoder.init_label_emb(cfg.label_path)
|
| 1576 |
+
|
| 1577 |
+
# Multi-Modal FPN
|
| 1578 |
+
self.FPN = FPN(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 1579 |
+
# Fined-grained Fusion
|
| 1580 |
+
self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
| 1581 |
+
d_model=cfg.vis_dim,
|
| 1582 |
+
nhead=cfg.num_head,
|
| 1583 |
+
dim_ffn=cfg.dim_ffn,
|
| 1584 |
+
dropout=cfg.dropout,
|
| 1585 |
+
return_intermediate=cfg.intermediate)
|
| 1586 |
+
# adaptively aggretation
|
| 1587 |
+
self.ASFF = AdaptiveSpatialFeatureFusion(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 1588 |
+
# text projector
|
| 1589 |
+
self.projT = Text_Projector(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 1590 |
+
# parameter
|
| 1591 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 1592 |
+
self.multi_label_logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 1593 |
+
self.share_temperature = True
|
| 1594 |
+
self.margin = 1
|
| 1595 |
+
self.eps = 1e-3
|
| 1596 |
+
self.ce = nn.CrossEntropyLoss()
|
| 1597 |
+
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
| 1598 |
+
self.fc = nn.Linear(512, cfg.num_classes)
|
| 1599 |
+
|
| 1600 |
+
|
| 1601 |
+
|
| 1602 |
+
def IT_loss(self, image_features, text_features):
|
| 1603 |
+
# b, 1024 / b, 1024
|
| 1604 |
+
batch = image_features.shape[0]
|
| 1605 |
+
# # normalized features
|
| 1606 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 1607 |
+
keepdim=True)
|
| 1608 |
+
text_features = text_features / text_features.norm(dim=-1,
|
| 1609 |
+
keepdim=True)
|
| 1610 |
+
|
| 1611 |
+
# cosine similarity as logits
|
| 1612 |
+
logit_scale = self.logit_scale.exp()
|
| 1613 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 1614 |
+
logits_per_text = logits_per_image.t()
|
| 1615 |
+
|
| 1616 |
+
# shape = [global_batch_size, global_batch_size]
|
| 1617 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
| 1618 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
| 1619 |
+
|
| 1620 |
+
|
| 1621 |
+
return contrastive_loss
|
| 1622 |
+
|
| 1623 |
+
def IL_loss(self, image_features, label_features, labels):
|
| 1624 |
+
|
| 1625 |
+
# b, 1024 / K, 1024/ b, K
|
| 1626 |
+
positive_tagsT = torch.clamp(labels,0.,1.)
|
| 1627 |
+
negative_tagsT = torch.clamp(-labels,0.,1.)
|
| 1628 |
+
maskT = positive_tagsT.unsqueeze(1) * negative_tagsT.unsqueeze(-1)
|
| 1629 |
+
|
| 1630 |
+
# normalized features
|
| 1631 |
+
|
| 1632 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 1633 |
+
keepdim=True)
|
| 1634 |
+
label_features = label_features / label_features.norm(dim=-1,
|
| 1635 |
+
keepdim=True)
|
| 1636 |
+
# cosine similarity as logits
|
| 1637 |
+
logit_scale = self.multi_label_logit_scale.exp()
|
| 1638 |
+
logits_per_image = logit_scale * image_features @ label_features.t()
|
| 1639 |
+
# logits_per_label = logit_scale * label_features @ image_features.t()
|
| 1640 |
+
pos_score_matT = logits_per_image * positive_tagsT
|
| 1641 |
+
neg_score_matT = logits_per_image * negative_tagsT
|
| 1642 |
+
IW_pos3T = pos_score_matT.unsqueeze(1)
|
| 1643 |
+
IW_neg3T = neg_score_matT.unsqueeze(-1)
|
| 1644 |
+
OT = self.margin + IW_neg3T - IW_pos3T
|
| 1645 |
+
O_maskT = maskT * OT
|
| 1646 |
+
diffT = torch.clamp(O_maskT, 0)
|
| 1647 |
+
violationT = torch.sign(diffT).sum(1).sum(1)
|
| 1648 |
+
diffT = diffT.sum(1).sum(1)
|
| 1649 |
+
lossT = torch.mean(diffT / (violationT + self.eps))
|
| 1650 |
+
|
| 1651 |
+
|
| 1652 |
+
|
| 1653 |
+
|
| 1654 |
+
return lossT
|
| 1655 |
+
|
| 1656 |
+
def margin_loss(self, image_features, label_features, labels):
|
| 1657 |
+
|
| 1658 |
+
# b, 1024 / K, 1024/ b, K
|
| 1659 |
+
|
| 1660 |
+
|
| 1661 |
+
# normalized features
|
| 1662 |
+
|
| 1663 |
+
image_features = image_features / image_features.norm(dim=-1,
|
| 1664 |
+
keepdim=True)
|
| 1665 |
+
label_features = label_features / label_features.norm(dim=-1,
|
| 1666 |
+
keepdim=True)
|
| 1667 |
+
# cosine similarity as logits
|
| 1668 |
+
logit_scale = self.multi_label_logit_scale.exp()
|
| 1669 |
+
logits_per_image = logit_scale * image_features @ label_features.t()
|
| 1670 |
+
# logits_per_label = logit_scale * label_features @ image_features.t()
|
| 1671 |
+
|
| 1672 |
+
image_label_positive_pairs = logits_per_image * labels
|
| 1673 |
+
image_label_mean_positive = image_label_positive_pairs.sum() / labels.sum()
|
| 1674 |
+
image_label_negative_pairs = logits_per_image * (1 - labels)
|
| 1675 |
+
image_label_mean_negative = image_label_negative_pairs.sum() / (logits_per_image.numel() - labels.sum() + self.eps)
|
| 1676 |
+
|
| 1677 |
+
contrastive_loss = torch.relu(self.margin - image_label_mean_positive + image_label_mean_negative)
|
| 1678 |
+
|
| 1679 |
+
return contrastive_loss
|
| 1680 |
+
|
| 1681 |
+
def forward(self, img, txt, target=None):
|
| 1682 |
+
'''
|
| 1683 |
+
img: b, 3, h, w
|
| 1684 |
+
word: b, words
|
| 1685 |
+
word_mask: b, words
|
| 1686 |
+
mask: b, 1, h, w
|
| 1687 |
+
'''
|
| 1688 |
+
|
| 1689 |
+
# padding mask used in decoder
|
| 1690 |
+
|
| 1691 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 1692 |
+
|
| 1693 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 1694 |
+
# word: b, length, 512
|
| 1695 |
+
# state: b, 1024
|
| 1696 |
+
# image: b, 512
|
| 1697 |
+
vis, image = self.backbone.encode_image(img)
|
| 1698 |
+
word, text = self.backbone.encode_text(txt)
|
| 1699 |
+
|
| 1700 |
+
|
| 1701 |
+
fl = self.Label_encoder(image.device)
|
| 1702 |
+
# b, 512, 14, 14 (C4)
|
| 1703 |
+
fq = self.FPN(vis, text)
|
| 1704 |
+
b, c, h, w = fq.size()
|
| 1705 |
+
# b, 512, 14, 14
|
| 1706 |
+
ff = self.FGFusion(fq, word, pad_mask)
|
| 1707 |
+
# b, 512, 196
|
| 1708 |
+
ff = ff.reshape(b, c, h, w)
|
| 1709 |
+
f2 = self.avg(ff)
|
| 1710 |
+
# b, 1024
|
| 1711 |
+
f1 = image.unsqueeze(-1).unsqueeze(-1)
|
| 1712 |
+
fv = self.ASFF(f1, f2)
|
| 1713 |
+
|
| 1714 |
+
# b, 1024
|
| 1715 |
+
ft = self.projT(text)
|
| 1716 |
+
# labels = torch.ones(image.shape[0], image.shape[0]).to(image.device)
|
| 1717 |
+
# labels[:,-1] = 0
|
| 1718 |
+
# labels[3, :] = 0
|
| 1719 |
+
|
| 1720 |
+
loss1 = self.IT_loss(fv, ft)
|
| 1721 |
+
loss2 = self.IL_loss(fv, fl, target)
|
| 1722 |
+
loss = loss1 + loss2
|
| 1723 |
+
# out = self.avg(fq)
|
| 1724 |
+
# out = out.squeeze(-1).squeeze(-1)
|
| 1725 |
+
# out = self.fc(out)
|
| 1726 |
+
|
| 1727 |
+
return loss, fv, ft, fl
|
| 1728 |
+
|
| 1729 |
+
class zh_clip(nn.Module):
|
| 1730 |
+
def __init__(self, cfg):
|
| 1731 |
+
super().__init__()
|
| 1732 |
+
# Vision & Text Encoder
|
| 1733 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
| 1734 |
+
map_location="cpu").eval()
|
| 1735 |
+
self.backbone = build_modified_model(clip_model.state_dict(), cfg.word_len).float()
|
| 1736 |
+
|
| 1737 |
+
self.text_encoder = AutoModelForSequenceClassification.from_pretrained(cfg.chinese)
|
| 1738 |
+
self.text_lin = nn.Linear(512, 1024)
|
| 1739 |
+
|
| 1740 |
+
|
| 1741 |
+
# Multi-Modal FPN
|
| 1742 |
+
self.neck = ViTFPN(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 1743 |
+
# Decoder
|
| 1744 |
+
|
| 1745 |
+
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
| 1746 |
+
self.fc = nn.Linear(512, cfg.num_classes)
|
| 1747 |
+
def forward(self, img, word):
|
| 1748 |
+
'''
|
| 1749 |
+
img: b, 3, h, w
|
| 1750 |
+
word: b, words
|
| 1751 |
+
word_mask: b, words
|
| 1752 |
+
mask: b, 1, h, w
|
| 1753 |
+
'''
|
| 1754 |
+
# padding mask used in decoder
|
| 1755 |
+
|
| 1756 |
+
|
| 1757 |
+
# vis: v1 / v2 / b, 49, 1024/ b, 196, 512
|
| 1758 |
+
# state: b, 1024
|
| 1759 |
+
# feat: f1 / f2 / b, 1024, 7, 7/ b, 1024, 7, 7
|
| 1760 |
+
# cls: c1 / c2 / b, 1024/ b, 512
|
| 1761 |
+
vis, feat, cls = self.backbone.encode_image(img)
|
| 1762 |
+
state = self.text_encoder(word.squeeze(1)).logits
|
| 1763 |
+
state = self.text_lin(state)
|
| 1764 |
+
# b, 1024, 7, 7 (C5)
|
| 1765 |
+
fq = self.neck(feat, state)
|
| 1766 |
+
|
| 1767 |
+
out = self.avg(fq)
|
| 1768 |
+
out = out.squeeze(-1).squeeze(-1)
|
| 1769 |
+
out = self.fc(out)
|
| 1770 |
+
|
| 1771 |
+
return out
|
| 1772 |
+
|
| 1773 |
+
class poi_clip(nn.Module):
|
| 1774 |
+
def __init__(self, cfg):
|
| 1775 |
+
super().__init__()
|
| 1776 |
+
# Vision & Text Encoder
|
| 1777 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
| 1778 |
+
map_location="cpu").eval()
|
| 1779 |
+
self.backbone = build_modified_model(clip_model.state_dict(), cfg.word_len).float()
|
| 1780 |
+
|
| 1781 |
+
self.text_encoder = AutoModelForSequenceClassification.from_pretrained(cfg.chinese)
|
| 1782 |
+
self.text_lin = nn.Linear(512, 1024)
|
| 1783 |
+
|
| 1784 |
+
|
| 1785 |
+
# Multi-Modal FPN
|
| 1786 |
+
self.neck = ViTFPN(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 1787 |
+
# Decoder
|
| 1788 |
+
|
| 1789 |
+
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
| 1790 |
+
self.fc = nn.Linear(512, cfg.num_classes)
|
| 1791 |
+
def forward(self, img, word):
|
| 1792 |
+
'''
|
| 1793 |
+
img: b, 3, h, w
|
| 1794 |
+
word: b, words
|
| 1795 |
+
word_mask: b, words
|
| 1796 |
+
mask: b, 1, h, w
|
| 1797 |
+
'''
|
| 1798 |
+
# padding mask used in decoder
|
| 1799 |
+
|
| 1800 |
+
|
| 1801 |
+
# vis: v1 / v2 / b, 49, 1024/ b, 196, 512
|
| 1802 |
+
# state: b, 1024
|
| 1803 |
+
# feat: f1 / f2 / b, 1024, 7, 7/ b, 1024, 7, 7
|
| 1804 |
+
# cls: c1 / c2 / b, 1024/ b, 512
|
| 1805 |
+
vis, feat, cls = self.backbone.encode_image(img)
|
| 1806 |
+
state = self.text_encoder(word.squeeze(1)).logits
|
| 1807 |
+
state = self.text_lin(state)
|
| 1808 |
+
# b, 1024, 7, 7 (C5)
|
| 1809 |
+
fq = self.neck(feat, state)
|
| 1810 |
+
|
| 1811 |
+
out = self.avg(fq)
|
| 1812 |
+
out = out.squeeze(-1).squeeze(-1)
|
| 1813 |
+
out = self.fc(out)
|
| 1814 |
+
|
| 1815 |
+
return out
|
| 1816 |
+
|
| 1817 |
+
class Clip_hash_model(nn.Module):
|
| 1818 |
+
def __init__(self, cfg):
|
| 1819 |
+
super().__init__()
|
| 1820 |
+
|
| 1821 |
+
# Vision & Text Encoder
|
| 1822 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
| 1823 |
+
map_location="cpu").eval()
|
| 1824 |
+
self.backbone = build_model(clip_model.state_dict(), cfg.word_len).float()
|
| 1825 |
+
# Multi-Modal FPN
|
| 1826 |
+
self.neck = FPN(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 1827 |
+
|
| 1828 |
+
# Decoder
|
| 1829 |
+
self.avg = nn.AdaptiveAvgPool2d((1, 1))
|
| 1830 |
+
|
| 1831 |
+
self.classifier = nn.Sequential(
|
| 1832 |
+
nn.Linear(cfg.fpn_out[1], cfg.hash_dim, bias=True),
|
| 1833 |
+
nn.Tanh(),
|
| 1834 |
+
)
|
| 1835 |
+
|
| 1836 |
+
self.classifier2 = nn.Sequential(
|
| 1837 |
+
nn.Linear(cfg.hash_dim, cfg.num_classes)
|
| 1838 |
+
)
|
| 1839 |
+
|
| 1840 |
+
# Hash Module
|
| 1841 |
+
self.image_module = nn.Sequential(
|
| 1842 |
+
nn.Linear(cfg.img_dim, cfg.hidden_dim, bias=True),
|
| 1843 |
+
nn.BatchNorm1d(cfg.hidden_dim),
|
| 1844 |
+
nn.ReLU(True),
|
| 1845 |
+
nn.Linear(cfg.hidden_dim, cfg.hash_dim, bias=True),
|
| 1846 |
+
nn.Tanh()
|
| 1847 |
+
)
|
| 1848 |
+
|
| 1849 |
+
self.text_module = nn.Sequential(
|
| 1850 |
+
nn.Linear(cfg.txt_dim, cfg.hidden_dim, bias=True),
|
| 1851 |
+
nn.BatchNorm1d(cfg.hidden_dim),
|
| 1852 |
+
nn.ReLU(True),
|
| 1853 |
+
nn.Linear(cfg.hidden_dim, cfg.hash_dim, bias=True),
|
| 1854 |
+
nn.Tanh()
|
| 1855 |
+
)
|
| 1856 |
+
def forward(self, img, word, mask=None):
|
| 1857 |
+
'''
|
| 1858 |
+
img: b, 3, h, w
|
| 1859 |
+
word: b, words
|
| 1860 |
+
word_mask: b, words
|
| 1861 |
+
'''
|
| 1862 |
+
pad_mask = torch.zeros_like(word).masked_fill_(word == 0, 1).bool()
|
| 1863 |
+
# vis: C3 / C4 / C5
|
| 1864 |
+
# word: b, length, 512
|
| 1865 |
+
# state: b, 1024
|
| 1866 |
+
vis, image = self.backbone.encode_image(img)
|
| 1867 |
+
word, state = self.backbone.encode_text(word)
|
| 1868 |
+
|
| 1869 |
+
# b, 512, 26, 26 (C4)
|
| 1870 |
+
fq = self.neck(vis, state)
|
| 1871 |
+
|
| 1872 |
+
# out_hash: b, code_length
|
| 1873 |
+
# res: b, classes
|
| 1874 |
+
out = self.avg(fq)
|
| 1875 |
+
out = out.squeeze(-1).squeeze(-1)
|
| 1876 |
+
out_hash = self.classifier(out)
|
| 1877 |
+
res = self.classifier2(out_hash)
|
| 1878 |
+
|
| 1879 |
+
# img_hash: b, code_length
|
| 1880 |
+
# txt_hash: b, code_length
|
| 1881 |
+
img_hash = self.image_module(image)
|
| 1882 |
+
txt_hash = self.text_module(state)
|
| 1883 |
+
|
| 1884 |
+
|
| 1885 |
+
|
| 1886 |
+
return img_hash, txt_hash, out_hash, res
|
| 1887 |
+
|
| 1888 |
+
class Clip_model(nn.Module):
|
| 1889 |
+
def __init__(self, cfg):
|
| 1890 |
+
super().__init__()
|
| 1891 |
+
|
| 1892 |
+
# Vision & Text Encoder
|
| 1893 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
| 1894 |
+
map_location="cpu").eval()
|
| 1895 |
+
|
| 1896 |
+
self.neck = FPN(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
| 1897 |
+
self.avg = nn.AdaptiveAvgPool2d((1, 1))
|
| 1898 |
+
self.backbone = build_model(clip_model.state_dict(), cfg.word_len).float()
|
| 1899 |
+
|
| 1900 |
+
def forward(self, img, word, mask=None):
|
| 1901 |
+
'''
|
| 1902 |
+
img: b, 3, h, w
|
| 1903 |
+
word: b, words
|
| 1904 |
+
word_mask: b, words
|
| 1905 |
+
'''
|
| 1906 |
+
# vis: C3 / C4 / C5
|
| 1907 |
+
# word: b, length, 512
|
| 1908 |
+
# state: b, 1024
|
| 1909 |
+
pad_mask = torch.zeros_like(word).masked_fill_(word == 0, 1).bool()
|
| 1910 |
+
vis, image = self.backbone.encode_image(img)
|
| 1911 |
+
word, state = self.backbone.encode_text(word)
|
| 1912 |
+
f = self.neck(vis, state)
|
| 1913 |
+
out = self.avg(f)
|
| 1914 |
+
out = out.squeeze(-1).squeeze(-1)
|
| 1915 |
+
image_features = image / image.norm(dim=-1, keepdim=True)
|
| 1916 |
+
text_features = state / state.norm(dim=-1, keepdim=True)
|
| 1917 |
+
|
| 1918 |
+
# cosine similarity as logits
|
| 1919 |
+
logit_scale = self.backbone.logit_scale.exp()
|
| 1920 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 1921 |
+
logits_per_text = logits_per_image.t()
|
| 1922 |
+
|
| 1923 |
+
# shape = [global_batch_size, global_batch_size]
|
| 1924 |
+
return logits_per_image, logits_per_text
|
| 1925 |
+
|
| 1926 |
+
|
| 1927 |
+
class CISEN_rsvit_hug(nn.Module, PyTorchModelHubMixin):
|
| 1928 |
+
def __init__(self, embed_dim, image_resolution, vision_layers, vision_width,
|
| 1929 |
+
vision_patch_size, context_length, txt_length, vocab_size,
|
| 1930 |
+
transformer_width, transformer_heads, transformer_layers, patch_size,
|
| 1931 |
+
output_dim, ratio, emb_dim, fpn_in, fpn_out):
|
| 1932 |
+
super().__init__()
|
| 1933 |
+
# Vision & Text Encoder & Label Encoder
|
| 1934 |
+
vision_heads = vision_width * 32 // 64
|
| 1935 |
+
|
| 1936 |
+
backbone = CLIP(embed_dim, image_resolution, vision_layers, vision_width,
|
| 1937 |
+
vision_patch_size, context_length, txt_length, vocab_size,
|
| 1938 |
+
transformer_width, transformer_heads, transformer_layers)
|
| 1939 |
+
self.backbone = backbone.float()
|
| 1940 |
+
self.patch_emb = image_resolution // patch_size
|
| 1941 |
+
|
| 1942 |
+
self.FPN = ViTFPN(image_resolution, in_channels=fpn_in, out_channels=fpn_out)
|
| 1943 |
+
|
| 1944 |
+
self.ADP = Adapter(output_dim, 4)
|
| 1945 |
+
# parameter
|
| 1946 |
+
self.ratio = ratio
|
| 1947 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 1948 |
+
self.share_temperature = True
|
| 1949 |
+
self.ce = nn.CrossEntropyLoss()
|
| 1950 |
+
self.ms_adaptor = nn.ModuleList(
|
| 1951 |
+
[
|
| 1952 |
+
nn.Sequential(
|
| 1953 |
+
nn.ConvTranspose2d(emb_dim, emb_dim, 2, 2),
|
| 1954 |
+
nn.GroupNorm(32, emb_dim),
|
| 1955 |
+
nn.GELU(),
|
| 1956 |
+
nn.ConvTranspose2d(emb_dim, emb_dim, 2, 2),
|
| 1957 |
+
),
|
| 1958 |
+
nn.Sequential(
|
| 1959 |
+
nn.ConvTranspose2d(emb_dim, emb_dim, 2, 2),
|
| 1960 |
+
),
|
| 1961 |
+
nn.Sequential(
|
| 1962 |
+
nn.Identity(),
|
| 1963 |
+
),
|
| 1964 |
+
nn.Sequential(
|
| 1965 |
+
nn.MaxPool2d(2),
|
| 1966 |
+
),
|
| 1967 |
+
|
| 1968 |
+
]
|
| 1969 |
+
)
|
| 1970 |
+
|
| 1971 |
+
self.ms_adaptor.apply(self.init_adaptor)
|
| 1972 |
+
def init_adaptor(self, m):
|
| 1973 |
+
if isinstance(m, nn.Conv2d):
|
| 1974 |
+
lecun_normal_(m.weight)
|
| 1975 |
+
if m.bias is not None:
|
| 1976 |
+
nn.init.constant_(m.bias, 0)
|
| 1977 |
+
elif isinstance(m, nn.GroupNorm):
|
| 1978 |
+
nn.init.constant_(m.bias, 0)
|
| 1979 |
+
nn.init.constant_(m.weight, 1.0)
|
| 1980 |
+
elif isinstance(m, nn.ConvTranspose2d):
|
| 1981 |
+
lecun_normal_(m.weight)
|
| 1982 |
+
if m.bias is not None:
|
| 1983 |
+
nn.init.zeros_(m.bias)
|
| 1984 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
| 1985 |
+
|
| 1986 |
+
def image_encode(self, img):
|
| 1987 |
+
vis, image = self.backbone.encode_image(img)
|
| 1988 |
+
|
| 1989 |
+
x = self.ADP(image)
|
| 1990 |
+
|
| 1991 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
| 1992 |
+
return x
|
| 1993 |
+
|
| 1994 |
+
def text_encode(self, txt):
|
| 1995 |
+
|
| 1996 |
+
word, text = self.backbone.encode_text(txt)
|
| 1997 |
+
|
| 1998 |
+
return text
|
| 1999 |
+
|
| 2000 |
+
def forward(self, img, txt):
|
| 2001 |
+
'''
|
| 2002 |
+
img: b, 3, h, w
|
| 2003 |
+
word: b, words
|
| 2004 |
+
word_mask: b, words
|
| 2005 |
+
mask: b, 1, h, w
|
| 2006 |
+
stage: 1st or 2nd stage
|
| 2007 |
+
'''
|
| 2008 |
+
# padding mask used in decoder
|
| 2009 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
| 2010 |
+
|
| 2011 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
| 2012 |
+
# word: b, length, 512
|
| 2013 |
+
# text: b, 1024
|
| 2014 |
+
# image: b, 1024
|
| 2015 |
+
vis, image = self.backbone.encode_image(img)
|
| 2016 |
+
|
| 2017 |
+
word, text = self.backbone.encode_text(txt)
|
| 2018 |
+
|
| 2019 |
+
x = self.ADP(image)
|
| 2020 |
+
|
| 2021 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
| 2022 |
+
# Construct multi-scale feats
|
| 2023 |
+
vis_trans = []
|
| 2024 |
+
for i in range(len(self.ms_adaptor)):
|
| 2025 |
+
x_ = rearrange(
|
| 2026 |
+
vis[i],
|
| 2027 |
+
"b (h w) c -> b c h w",
|
| 2028 |
+
h=self.patch_emb,
|
| 2029 |
+
w=self.patch_emb,
|
| 2030 |
+
).contiguous()
|
| 2031 |
+
|
| 2032 |
+
feats = self.ms_adaptor[i](x_)
|
| 2033 |
+
|
| 2034 |
+
vis_trans.append(feats)
|
| 2035 |
+
|
| 2036 |
+
# fq = self.FPN(vis, x_t)
|
| 2037 |
+
fv_t = self.FPN(vis_trans[1:], x, False)
|
| 2038 |
+
# fv_t = self.gap(fq_t)
|
| 2039 |
+
|
| 2040 |
+
# b, 1024
|
| 2041 |
+
fv = fv_t
|
| 2042 |
+
ft = text
|
| 2043 |
+
fi = x
|
| 2044 |
+
|
| 2045 |
+
return fv, fi, ft
|
cisen/utils/__pycache__/config.cpython-38.pyc
ADDED
|
Binary file (4.38 kB). View file
|
|
|
cisen/utils/__pycache__/dataset.cpython-38.pyc
ADDED
|
Binary file (12.9 kB). View file
|
|
|
cisen/utils/bpe_simple_vocab_16e6.txt.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
| 3 |
+
size 1356917
|
cisen/utils/config.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -----------------------------------------------------------------------------
|
| 2 |
+
# Functions for parsing args
|
| 3 |
+
# -----------------------------------------------------------------------------
|
| 4 |
+
import copy
|
| 5 |
+
import os
|
| 6 |
+
from ast import literal_eval
|
| 7 |
+
|
| 8 |
+
import yaml
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class CfgNode(dict):
|
| 12 |
+
"""
|
| 13 |
+
CfgNode represents an internal node in the configuration tree. It's a simple
|
| 14 |
+
dict-like container that allows for attribute-based access to keys.
|
| 15 |
+
"""
|
| 16 |
+
def __init__(self, init_dict=None, key_list=None, new_allowed=False):
|
| 17 |
+
# Recursively convert nested dictionaries in init_dict into CfgNodes
|
| 18 |
+
init_dict = {} if init_dict is None else init_dict
|
| 19 |
+
key_list = [] if key_list is None else key_list
|
| 20 |
+
for k, v in init_dict.items():
|
| 21 |
+
if type(v) is dict:
|
| 22 |
+
# Convert dict to CfgNode
|
| 23 |
+
init_dict[k] = CfgNode(v, key_list=key_list + [k])
|
| 24 |
+
super(CfgNode, self).__init__(init_dict)
|
| 25 |
+
|
| 26 |
+
def __getattr__(self, name):
|
| 27 |
+
if name in self:
|
| 28 |
+
return self[name]
|
| 29 |
+
else:
|
| 30 |
+
raise AttributeError(name)
|
| 31 |
+
|
| 32 |
+
def __setattr__(self, name, value):
|
| 33 |
+
self[name] = value
|
| 34 |
+
|
| 35 |
+
def __str__(self):
|
| 36 |
+
def _indent(s_, num_spaces):
|
| 37 |
+
s = s_.split("\n")
|
| 38 |
+
if len(s) == 1:
|
| 39 |
+
return s_
|
| 40 |
+
first = s.pop(0)
|
| 41 |
+
s = [(num_spaces * " ") + line for line in s]
|
| 42 |
+
s = "\n".join(s)
|
| 43 |
+
s = first + "\n" + s
|
| 44 |
+
return s
|
| 45 |
+
|
| 46 |
+
r = ""
|
| 47 |
+
s = []
|
| 48 |
+
for k, v in sorted(self.items()):
|
| 49 |
+
seperator = "\n" if isinstance(v, CfgNode) else " "
|
| 50 |
+
attr_str = "{}:{}{}".format(str(k), seperator, str(v))
|
| 51 |
+
attr_str = _indent(attr_str, 2)
|
| 52 |
+
s.append(attr_str)
|
| 53 |
+
r += "\n".join(s)
|
| 54 |
+
return r
|
| 55 |
+
|
| 56 |
+
def __repr__(self):
|
| 57 |
+
return "{}({})".format(self.__class__.__name__,
|
| 58 |
+
super(CfgNode, self).__repr__())
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def load_cfg_from_cfg_file(file):
|
| 62 |
+
cfg = {}
|
| 63 |
+
assert os.path.isfile(file) and file.endswith('.yaml'), \
|
| 64 |
+
'{} is not a yaml file'.format(file)
|
| 65 |
+
|
| 66 |
+
with open(file, 'r') as f:
|
| 67 |
+
cfg_from_file = yaml.safe_load(f)
|
| 68 |
+
|
| 69 |
+
for key in cfg_from_file:
|
| 70 |
+
for k, v in cfg_from_file[key].items():
|
| 71 |
+
cfg[k] = v
|
| 72 |
+
|
| 73 |
+
cfg = CfgNode(cfg)
|
| 74 |
+
return cfg
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def merge_cfg_from_list(cfg, cfg_list):
|
| 78 |
+
new_cfg = copy.deepcopy(cfg)
|
| 79 |
+
assert len(cfg_list) % 2 == 0
|
| 80 |
+
for full_key, v in zip(cfg_list[0::2], cfg_list[1::2]):
|
| 81 |
+
subkey = full_key.split('.')[-1]
|
| 82 |
+
assert subkey in cfg, 'Non-existent key: {}'.format(full_key)
|
| 83 |
+
value = _decode_cfg_value(v)
|
| 84 |
+
value = _check_and_coerce_cfg_value_type(value, cfg[subkey], subkey,
|
| 85 |
+
full_key)
|
| 86 |
+
setattr(new_cfg, subkey, value)
|
| 87 |
+
|
| 88 |
+
return new_cfg
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def _decode_cfg_value(v):
|
| 92 |
+
"""Decodes a raw config value (e.g., from a yaml config files or command
|
| 93 |
+
line argument) into a Python object.
|
| 94 |
+
"""
|
| 95 |
+
# All remaining processing is only applied to strings
|
| 96 |
+
if not isinstance(v, str):
|
| 97 |
+
return v
|
| 98 |
+
# Try to interpret `v` as a:
|
| 99 |
+
# string, number, tuple, list, dict, boolean, or None
|
| 100 |
+
try:
|
| 101 |
+
v = literal_eval(v)
|
| 102 |
+
# The following two excepts allow v to pass through when it represents a
|
| 103 |
+
# string.
|
| 104 |
+
#
|
| 105 |
+
# Longer explanation:
|
| 106 |
+
# The type of v is always a string (before calling literal_eval), but
|
| 107 |
+
# sometimes it *represents* a string and other times a data structure, like
|
| 108 |
+
# a list. In the case that v represents a string, what we got back from the
|
| 109 |
+
# yaml parser is 'foo' *without quotes* (so, not '"foo"'). literal_eval is
|
| 110 |
+
# ok with '"foo"', but will raise a ValueError if given 'foo'. In other
|
| 111 |
+
# cases, like paths (v = 'foo/bar' and not v = '"foo/bar"'), literal_eval
|
| 112 |
+
# will raise a SyntaxError.
|
| 113 |
+
except ValueError:
|
| 114 |
+
pass
|
| 115 |
+
except SyntaxError:
|
| 116 |
+
pass
|
| 117 |
+
return v
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def _check_and_coerce_cfg_value_type(replacement, original, key, full_key):
|
| 121 |
+
"""Checks that `replacement`, which is intended to replace `original` is of
|
| 122 |
+
the right type. The type is correct if it matches exactly or is one of a few
|
| 123 |
+
cases in which the type can be easily coerced.
|
| 124 |
+
"""
|
| 125 |
+
original_type = type(original)
|
| 126 |
+
replacement_type = type(replacement)
|
| 127 |
+
|
| 128 |
+
# The types must match (with some exceptions)
|
| 129 |
+
if replacement_type == original_type:
|
| 130 |
+
return replacement
|
| 131 |
+
|
| 132 |
+
# Cast replacement from from_type to to_type if the replacement and original
|
| 133 |
+
# types match from_type and to_type
|
| 134 |
+
def conditional_cast(from_type, to_type):
|
| 135 |
+
if replacement_type == from_type and original_type == to_type:
|
| 136 |
+
return True, to_type(replacement)
|
| 137 |
+
else:
|
| 138 |
+
return False, None
|
| 139 |
+
|
| 140 |
+
# Conditionally casts
|
| 141 |
+
# list <-> tuple
|
| 142 |
+
casts = [(tuple, list), (list, tuple)]
|
| 143 |
+
# For py2: allow converting from str (bytes) to a unicode string
|
| 144 |
+
try:
|
| 145 |
+
casts.append((str, unicode)) # noqa: F821
|
| 146 |
+
except Exception:
|
| 147 |
+
pass
|
| 148 |
+
|
| 149 |
+
for (from_type, to_type) in casts:
|
| 150 |
+
converted, converted_value = conditional_cast(from_type, to_type)
|
| 151 |
+
if converted:
|
| 152 |
+
return converted_value
|
| 153 |
+
|
| 154 |
+
raise ValueError(
|
| 155 |
+
"Type mismatch ({} vs. {}) with values ({} vs. {}) for config "
|
| 156 |
+
"key: {}".format(original_type, replacement_type, original,
|
| 157 |
+
replacement, full_key))
|
cisen/utils/dataset.py
ADDED
|
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List, Union
|
| 3 |
+
import random
|
| 4 |
+
|
| 5 |
+
import json
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import torch
|
| 9 |
+
from torch.utils.data import Dataset
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from loguru import logger
|
| 12 |
+
|
| 13 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
| 14 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 15 |
+
_tokenizer = _Tokenizer()
|
| 16 |
+
|
| 17 |
+
# text_tokenize = AutoTokenizer.from_pretrained("./Taiyi-CLIP-s", model_max_length=512)
|
| 18 |
+
def tokenize(texts: Union[str, List[str]],
|
| 19 |
+
context_length: int = 77,
|
| 20 |
+
truncate: bool = False) -> torch.LongTensor:
|
| 21 |
+
"""
|
| 22 |
+
Returns the tokenized representation of given input string(s)
|
| 23 |
+
|
| 24 |
+
Parameters
|
| 25 |
+
----------
|
| 26 |
+
texts : Union[str, List[str]]
|
| 27 |
+
An input string or a list of input strings to tokenize
|
| 28 |
+
|
| 29 |
+
context_length : int
|
| 30 |
+
The context length to use; all CLIP models use 77 as the context length
|
| 31 |
+
|
| 32 |
+
truncate: bool
|
| 33 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
| 34 |
+
|
| 35 |
+
Returns
|
| 36 |
+
-------
|
| 37 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
| 38 |
+
"""
|
| 39 |
+
if isinstance(texts, str):
|
| 40 |
+
texts = [texts]
|
| 41 |
+
|
| 42 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
| 43 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
| 44 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token]
|
| 45 |
+
for text in texts]
|
| 46 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 47 |
+
|
| 48 |
+
for i, tokens in enumerate(all_tokens):
|
| 49 |
+
if len(tokens) > context_length:
|
| 50 |
+
if truncate:
|
| 51 |
+
tokens = tokens[:context_length]
|
| 52 |
+
tokens[-1] = eot_token
|
| 53 |
+
else:
|
| 54 |
+
raise RuntimeError(
|
| 55 |
+
f"Input {texts[i]} is too long for context length {context_length}"
|
| 56 |
+
)
|
| 57 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
| 58 |
+
|
| 59 |
+
return result
|
| 60 |
+
|
| 61 |
+
def select_idxs(seq_length, n_to_select, n_from_select, seed=42):
|
| 62 |
+
"""
|
| 63 |
+
Select n_to_select indexes from each consequent n_from_select indexes from range with length seq_length, split
|
| 64 |
+
selected indexes to separate arrays
|
| 65 |
+
|
| 66 |
+
Example:
|
| 67 |
+
|
| 68 |
+
seq_length = 20
|
| 69 |
+
n_from_select = 5
|
| 70 |
+
n_to_select = 2
|
| 71 |
+
|
| 72 |
+
input, range of length seq_length:
|
| 73 |
+
range = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
|
| 74 |
+
|
| 75 |
+
sequences of length n_from_select:
|
| 76 |
+
sequences = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]
|
| 77 |
+
|
| 78 |
+
selected n_to_select elements from each sequence
|
| 79 |
+
selected = [[0, 4], [7, 9], [13, 14], [16, 18]]
|
| 80 |
+
|
| 81 |
+
output, n_to_select lists of length seq_length / n_from_select:
|
| 82 |
+
output = [[0, 7, 13, 16], [4, 9, 14, 18]]
|
| 83 |
+
|
| 84 |
+
:param seq_length: length of sequence, say 10
|
| 85 |
+
:param n_to_select: number of elements to select
|
| 86 |
+
:param n_from_select: number of consequent elements
|
| 87 |
+
:return:
|
| 88 |
+
"""
|
| 89 |
+
random.seed(seed)
|
| 90 |
+
idxs = [[] for _ in range(n_to_select)]
|
| 91 |
+
for i in range(seq_length // n_from_select):
|
| 92 |
+
ints = random.sample(range(n_from_select), n_to_select)
|
| 93 |
+
for j in range(n_to_select):
|
| 94 |
+
idxs[j].append(i * n_from_select + ints[j])
|
| 95 |
+
return idxs
|
| 96 |
+
|
| 97 |
+
def read_json(file_name, suppress_console_info=False):
|
| 98 |
+
"""
|
| 99 |
+
Read JSON
|
| 100 |
+
|
| 101 |
+
:param file_name: input JSON path
|
| 102 |
+
:param suppress_console_info: toggle console printing
|
| 103 |
+
:return: dictionary from JSON
|
| 104 |
+
"""
|
| 105 |
+
with open(file_name, 'r') as f:
|
| 106 |
+
data = json.load(f)
|
| 107 |
+
if not suppress_console_info:
|
| 108 |
+
print("Read from:", file_name)
|
| 109 |
+
return data
|
| 110 |
+
|
| 111 |
+
def get_image_file_names(data, suppress_console_info=False):# ok
|
| 112 |
+
"""
|
| 113 |
+
Get list of image file names
|
| 114 |
+
|
| 115 |
+
:param data: original data from JSON
|
| 116 |
+
:param suppress_console_info: toggle console printing
|
| 117 |
+
:return: list of strings (file names)
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
file_names = []
|
| 121 |
+
for img in data['images']:
|
| 122 |
+
image_name = img["image_name"]
|
| 123 |
+
sample_id = img["sample_id"]
|
| 124 |
+
path_data = f'{sample_id}/{image_name}'
|
| 125 |
+
file_names.append(path_data)
|
| 126 |
+
if not suppress_console_info:
|
| 127 |
+
print("Total number of files:", len(file_names))
|
| 128 |
+
return file_names
|
| 129 |
+
|
| 130 |
+
def get_images(file_names, args):
|
| 131 |
+
transform = transforms.Compose([
|
| 132 |
+
transforms.Resize(224),
|
| 133 |
+
transforms.CenterCrop(224),
|
| 134 |
+
transforms.ToTensor(),
|
| 135 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
| 136 |
+
])
|
| 137 |
+
imgs = []
|
| 138 |
+
for i in range(len(file_names)):
|
| 139 |
+
|
| 140 |
+
img = np.array(transform(Image.open(os.path.join(args.imgs_folder, file_names[i]))))
|
| 141 |
+
imgs.append(img)
|
| 142 |
+
|
| 143 |
+
return np.array(imgs)
|
| 144 |
+
|
| 145 |
+
def get_captions(data, suppress_console_info=False):
|
| 146 |
+
"""
|
| 147 |
+
Get list of formatted captions
|
| 148 |
+
:param data: original data from JSON
|
| 149 |
+
:return: list of strings (captions)
|
| 150 |
+
"""
|
| 151 |
+
def format_caption(string):
|
| 152 |
+
return string.replace('.', '').replace(',', '').replace('!', '').replace('?', '').lower()
|
| 153 |
+
|
| 154 |
+
captions = []
|
| 155 |
+
augmented_captions_rb = []
|
| 156 |
+
augmented_captions_bt_prob = []
|
| 157 |
+
augmented_captions_bt_chain = []
|
| 158 |
+
for img in data['images']:
|
| 159 |
+
for sent in img['sentences']:
|
| 160 |
+
captions.append(format_caption(sent['raw']))
|
| 161 |
+
try:
|
| 162 |
+
augmented_captions_rb.append(format_caption(sent['aug_rb']))
|
| 163 |
+
except:
|
| 164 |
+
pass
|
| 165 |
+
try:
|
| 166 |
+
augmented_captions_bt_prob.append(format_caption(sent['aug_bt_prob']))
|
| 167 |
+
except:
|
| 168 |
+
pass
|
| 169 |
+
try:
|
| 170 |
+
augmented_captions_bt_chain.append(format_caption(sent['aug_bt_chain']))
|
| 171 |
+
except:
|
| 172 |
+
pass
|
| 173 |
+
if not suppress_console_info:
|
| 174 |
+
logger.info("Total number of captions:{}", len(captions))
|
| 175 |
+
logger.info("Total number of augmented captions RB:{}", len(augmented_captions_rb))
|
| 176 |
+
logger.info("Total number of augmented captions BT (prob):{}", len(augmented_captions_bt_prob))
|
| 177 |
+
logger.info("Total number of augmented captions BT (chain):{}", len(augmented_captions_bt_chain))
|
| 178 |
+
return captions, augmented_captions_rb, augmented_captions_bt_prob, augmented_captions_bt_chain
|
| 179 |
+
|
| 180 |
+
def get_labels(data, suppress_console_info=False):
|
| 181 |
+
"""
|
| 182 |
+
Get list of labels
|
| 183 |
+
|
| 184 |
+
:param data: original data from JSON
|
| 185 |
+
:param suppress_console_info: toggle console printing
|
| 186 |
+
:return: list ints (labels)
|
| 187 |
+
"""
|
| 188 |
+
|
| 189 |
+
labels = []
|
| 190 |
+
for img in data['images']:
|
| 191 |
+
labels.append(img["classcode"])
|
| 192 |
+
if not suppress_console_info:
|
| 193 |
+
print("Total number of labels:", len(labels))
|
| 194 |
+
return labels
|
| 195 |
+
|
| 196 |
+
def remove_tokens(data):
|
| 197 |
+
"""
|
| 198 |
+
Removes 'tokens' key from caption record, if exists; halves the size of the file
|
| 199 |
+
|
| 200 |
+
:param data: original data
|
| 201 |
+
:return: data without tokens
|
| 202 |
+
"""
|
| 203 |
+
for img in data['images']:
|
| 204 |
+
for sent in img['sentences']:
|
| 205 |
+
try:
|
| 206 |
+
sent.pop("tokens")
|
| 207 |
+
except:
|
| 208 |
+
pass
|
| 209 |
+
return data
|
| 210 |
+
|
| 211 |
+
def write_json(file_name, data):
|
| 212 |
+
"""
|
| 213 |
+
Write dictionary to JSON file
|
| 214 |
+
|
| 215 |
+
:param file_name: output path
|
| 216 |
+
:param data: dictionary
|
| 217 |
+
:return: None
|
| 218 |
+
"""
|
| 219 |
+
bn = os.path.basename(file_name)
|
| 220 |
+
dn = os.path.dirname(file_name)
|
| 221 |
+
name, ext = os.path.splitext(bn)
|
| 222 |
+
file_name = os.path.join(dn, name + '.json')
|
| 223 |
+
with open(file_name, 'w') as f:
|
| 224 |
+
f.write(json.dumps(data, indent='\t'))
|
| 225 |
+
print("Written to:", file_name)
|
| 226 |
+
|
| 227 |
+
def get_split_idxs(arr_len, args):
|
| 228 |
+
"""
|
| 229 |
+
Get indexes for training, query and db subsets
|
| 230 |
+
|
| 231 |
+
:param: arr_len: array length
|
| 232 |
+
|
| 233 |
+
:return: indexes for training, query and db subsets
|
| 234 |
+
"""
|
| 235 |
+
idx_all = list(range(arr_len))
|
| 236 |
+
idx_train, idx_eval = split_indexes(idx_all, args.dataset_train_split)
|
| 237 |
+
idx_query, idx_db = split_indexes(idx_eval, args.dataset_query_split)
|
| 238 |
+
|
| 239 |
+
return idx_train, idx_eval, idx_query, idx_db
|
| 240 |
+
|
| 241 |
+
def split_indexes(idx_all, split):
|
| 242 |
+
"""
|
| 243 |
+
Splits list in two parts.
|
| 244 |
+
|
| 245 |
+
:param idx_all: array to split
|
| 246 |
+
:param split: portion to split
|
| 247 |
+
:return: splitted lists
|
| 248 |
+
"""
|
| 249 |
+
idx_length = len(idx_all)
|
| 250 |
+
selection_length = int(idx_length * split)
|
| 251 |
+
|
| 252 |
+
idx_selection = sorted(random.sample(idx_all, selection_length))
|
| 253 |
+
|
| 254 |
+
idx_rest = sorted(list(set(idx_all).difference(set(idx_selection))))
|
| 255 |
+
|
| 256 |
+
return idx_selection, idx_rest
|
| 257 |
+
|
| 258 |
+
def get_caption_idxs(idx_train, idx_query, idx_db):
|
| 259 |
+
"""
|
| 260 |
+
Get caption indexes.
|
| 261 |
+
|
| 262 |
+
:param: idx_train: train image (and label) indexes
|
| 263 |
+
:param: idx_query: query image (and label) indexes
|
| 264 |
+
:param: idx_db: db image (and label) indexes
|
| 265 |
+
|
| 266 |
+
:return: caption indexes for corresponding index sets
|
| 267 |
+
"""
|
| 268 |
+
idx_train_cap = get_caption_idxs_from_img_idxs(idx_train, num=5)
|
| 269 |
+
idx_query_cap = get_caption_idxs_from_img_idxs(idx_query, num=5)
|
| 270 |
+
idx_db_cap = get_caption_idxs_from_img_idxs(idx_db)
|
| 271 |
+
return idx_train_cap, idx_query_cap, idx_db_cap
|
| 272 |
+
|
| 273 |
+
def get_caption_idxs_from_img_idxs(img_idxs, num=5):
|
| 274 |
+
"""
|
| 275 |
+
Get caption indexes. There are 5 captions for each image (and label).
|
| 276 |
+
Say, img indexes - [0, 10, 100]
|
| 277 |
+
Then, caption indexes - [0, 1, 2, 3, 4, 50, 51, 52, 53, 54, 100, 501, 502, 503, 504]
|
| 278 |
+
|
| 279 |
+
:param: img_idxs: image (and label) indexes
|
| 280 |
+
|
| 281 |
+
:return: caption indexes
|
| 282 |
+
"""
|
| 283 |
+
caption_idxs = []
|
| 284 |
+
for idx in img_idxs:
|
| 285 |
+
for i in range(num): # each image has 5 captions
|
| 286 |
+
caption_idxs.append(idx * num + i)
|
| 287 |
+
return caption_idxs
|
| 288 |
+
|
| 289 |
+
def split_data(images, captions, labels, captions_aug, images_aug, args):
|
| 290 |
+
"""
|
| 291 |
+
Split dataset to get training, query and db subsets
|
| 292 |
+
|
| 293 |
+
:param: images: image embeddings array
|
| 294 |
+
:param: captions: caption embeddings array
|
| 295 |
+
:param: labels: labels array
|
| 296 |
+
:param: captions_aug: augmented caption embeddings
|
| 297 |
+
:param: images_aug: augmented image embeddings
|
| 298 |
+
|
| 299 |
+
:return: tuples of (images, captions, labels), each element is array
|
| 300 |
+
"""
|
| 301 |
+
idx_tr, idx_q, idx_db = get_split_idxs(len(images), args)
|
| 302 |
+
idx_tr_cap, idx_q_cap, idx_db_cap = get_caption_idxs(idx_tr, idx_q, idx_db)
|
| 303 |
+
|
| 304 |
+
train = images[idx_tr], captions[idx_tr_cap], labels[idx_tr], (idx_tr, idx_tr_cap), captions_aug[idx_tr_cap], \
|
| 305 |
+
images_aug[idx_tr]
|
| 306 |
+
query = images[idx_q], captions[idx_q_cap], labels[idx_q], (idx_q, idx_q_cap), captions_aug[idx_q_cap], \
|
| 307 |
+
images_aug[idx_q]
|
| 308 |
+
db = images[idx_db], captions[idx_db_cap], labels[idx_db], (idx_db, idx_db_cap), captions_aug[idx_db_cap], \
|
| 309 |
+
images_aug[idx_db]
|
| 310 |
+
|
| 311 |
+
return train, query, db
|
| 312 |
+
|
| 313 |
+
def select_idxs(seq_length, n_to_select, n_from_select, seed=42):
|
| 314 |
+
"""
|
| 315 |
+
Select n_to_select indexes from each consequent n_from_select indexes from range with length seq_length, split
|
| 316 |
+
selected indexes to separate arrays
|
| 317 |
+
|
| 318 |
+
Example:
|
| 319 |
+
|
| 320 |
+
seq_length = 20
|
| 321 |
+
n_from_select = 5
|
| 322 |
+
n_to_select = 2
|
| 323 |
+
|
| 324 |
+
input, range of length seq_length:
|
| 325 |
+
range = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
|
| 326 |
+
|
| 327 |
+
sequences of length n_from_select:
|
| 328 |
+
sequences = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]
|
| 329 |
+
|
| 330 |
+
selected n_to_select elements from each sequence
|
| 331 |
+
selected = [[0, 4], [7, 9], [13, 14], [16, 18]]
|
| 332 |
+
|
| 333 |
+
output, n_to_select lists of length seq_length / n_from_select:
|
| 334 |
+
output = [[0, 7, 13, 16], [4, 9, 14, 18]]
|
| 335 |
+
|
| 336 |
+
:param seq_length: length of sequence, say 10
|
| 337 |
+
:param n_to_select: number of elements to select
|
| 338 |
+
:param n_from_select: number of consequent elements
|
| 339 |
+
:return:
|
| 340 |
+
"""
|
| 341 |
+
random.seed(seed)
|
| 342 |
+
idxs = [[] for _ in range(n_to_select)]
|
| 343 |
+
for i in range(seq_length // n_from_select):
|
| 344 |
+
ints = random.sample(range(n_from_select), n_to_select)
|
| 345 |
+
for j in range(n_to_select):
|
| 346 |
+
idxs[j].append(i * n_from_select + ints[j])
|
| 347 |
+
return idxs
|
| 348 |
+
|
| 349 |
+
class AbstractDataset(torch.utils.data.Dataset):
|
| 350 |
+
|
| 351 |
+
def __init__(self, images, captions, labels, targets, idxs):
|
| 352 |
+
|
| 353 |
+
self.image_replication_factor = 1 # default value, how many times we need to replicate image
|
| 354 |
+
|
| 355 |
+
self.images = images
|
| 356 |
+
self.captions = captions
|
| 357 |
+
self.labels = labels
|
| 358 |
+
self.targets = targets
|
| 359 |
+
|
| 360 |
+
self.idxs = np.array(idxs[0])
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
def __getitem__(self, index):
|
| 364 |
+
return
|
| 365 |
+
|
| 366 |
+
def __len__(self):
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
class CISENDataset(torch.utils.data.Dataset):
|
| 370 |
+
"""
|
| 371 |
+
Class for dataset representation.
|
| 372 |
+
Each image has 5 corresponding captions
|
| 373 |
+
Duplet dataset sample - img-txt (image and corresponding caption)
|
| 374 |
+
"""
|
| 375 |
+
def __init__(self, images, captions, args):
|
| 376 |
+
"""
|
| 377 |
+
Initialization.
|
| 378 |
+
:param images: image embeddings vector
|
| 379 |
+
:param captions: captions embeddings vector
|
| 380 |
+
:param labels: labels vector
|
| 381 |
+
"""
|
| 382 |
+
super().__init__()
|
| 383 |
+
|
| 384 |
+
self.images = images
|
| 385 |
+
self.captions = captions
|
| 386 |
+
# self.targets = targets
|
| 387 |
+
# self.labels = labels
|
| 388 |
+
|
| 389 |
+
self.word_len = args.word_len
|
| 390 |
+
|
| 391 |
+
def __getitem__(self, index):
|
| 392 |
+
"""
|
| 393 |
+
Returns a tuple (img, txt, label) - image and corresponding caption
|
| 394 |
+
:param index: index of sample
|
| 395 |
+
:return: tuple (img, txt, label)
|
| 396 |
+
"""
|
| 397 |
+
return (
|
| 398 |
+
torch.from_numpy(self.images[index].astype('float32')),
|
| 399 |
+
torch.from_numpy(np.array(tokenize(self.captions[index], self.word_len).squeeze(0)).astype('int64'))
|
| 400 |
+
# ,torch.from_numpy(self.targets[index])
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
def __len__(self):
|
| 404 |
+
return len(self.images)
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
class DatasetDuplet(AbstractDataset):
|
| 408 |
+
"""
|
| 409 |
+
Class for dataset representation.
|
| 410 |
+
Each image has 5 corresponding captions
|
| 411 |
+
Duplet dataset sample - img-txt (image and corresponding caption)
|
| 412 |
+
"""
|
| 413 |
+
def __init__(self, images, captions, labels, targets, idxs, args):
|
| 414 |
+
"""
|
| 415 |
+
Initialization.
|
| 416 |
+
:param images: image embeddings vector
|
| 417 |
+
:param captions: captions embeddings vector
|
| 418 |
+
:param labels: labels vector
|
| 419 |
+
"""
|
| 420 |
+
super().__init__(images, captions, labels, targets, idxs)
|
| 421 |
+
|
| 422 |
+
self.word_len = args.word_len
|
| 423 |
+
|
| 424 |
+
def __getitem__(self, index):
|
| 425 |
+
"""
|
| 426 |
+
Returns a tuple (img, txt, label) - image and corresponding caption
|
| 427 |
+
:param index: index of sample
|
| 428 |
+
:return: tuple (img, txt, label)
|
| 429 |
+
"""
|
| 430 |
+
return (
|
| 431 |
+
index,
|
| 432 |
+
torch.from_numpy(self.images[index].astype('float32')),
|
| 433 |
+
torch.from_numpy(np.array(tokenize(self.captions[index] + self.captions[index], self.word_len).squeeze(0)).astype('int64')),
|
| 434 |
+
self.labels[index],
|
| 435 |
+
self.targets[index]
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
def __len__(self):
|
| 439 |
+
return len(self.images)
|
| 440 |
+
|
| 441 |
+
class ModifiedDatasetDuplet(AbstractDataset):
|
| 442 |
+
"""
|
| 443 |
+
Class for dataset representation.
|
| 444 |
+
|
| 445 |
+
Each image has 5 corresponding captions
|
| 446 |
+
|
| 447 |
+
Duplet dataset sample - img-txt (image and corresponding caption)
|
| 448 |
+
"""
|
| 449 |
+
|
| 450 |
+
def __init__(self, images, captions, labels, targets, idxs, args):
|
| 451 |
+
"""
|
| 452 |
+
Initialization.
|
| 453 |
+
|
| 454 |
+
:param images: image embeddings vector
|
| 455 |
+
:param captions: captions embeddings vector
|
| 456 |
+
:param labels: labels vector
|
| 457 |
+
"""
|
| 458 |
+
super().__init__(images, captions, labels, targets, idxs)
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
def __getitem__(self, index):
|
| 462 |
+
"""
|
| 463 |
+
Returns a tuple (img, txt, label) - image and corresponding caption
|
| 464 |
+
|
| 465 |
+
:param index: index of sample
|
| 466 |
+
:return: tuple (img, txt, label)
|
| 467 |
+
"""
|
| 468 |
+
text = text_tokenize(self.captions[index], return_tensors='pt', padding='max_length', truncation='longest_first')['input_ids']
|
| 469 |
+
return (
|
| 470 |
+
index,
|
| 471 |
+
torch.from_numpy(self.images[index].astype('float32')),
|
| 472 |
+
torch.from_numpy(np.array(text_tokenize(self.captions[index], return_tensors='pt', padding='max_length', truncation='longest_first')['input_ids']).astype('int64')),
|
| 473 |
+
self.labels[index],
|
| 474 |
+
self.targets[index]
|
| 475 |
+
)
|
| 476 |
+
|
| 477 |
+
def __len__(self):
|
| 478 |
+
return len(self.images)
|
cisen/utils/hash.py
ADDED
|
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.autograd import Variable
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
import math
|
| 7 |
+
|
| 8 |
+
def init_hash(dataloader, args):
|
| 9 |
+
dataset_size = len(dataloader.dataset)
|
| 10 |
+
B = torch.randn(dataset_size, args.hash_dim).sign().cuda(non_blocking=True)
|
| 11 |
+
H = torch.zeros(dataset_size, args.hash_dim).sign().cuda(non_blocking=True)
|
| 12 |
+
Hi = torch.zeros(dataset_size, args.hash_dim).sign().cuda(non_blocking=True)
|
| 13 |
+
Ht = torch.zeros(dataset_size, args.hash_dim).sign().cuda(non_blocking=True)
|
| 14 |
+
|
| 15 |
+
return B, H, Hi, Ht
|
| 16 |
+
|
| 17 |
+
def GenerateCode(model, data_loader, args):
|
| 18 |
+
|
| 19 |
+
num_data = len(data_loader.dataset)
|
| 20 |
+
B = np.zeros([num_data, args.hash_dim], dtype=np.float32)
|
| 21 |
+
Bi = np.zeros([num_data, args.hash_dim], dtype=np.float32)
|
| 22 |
+
Bt = np.zeros([num_data, args.hash_dim], dtype=np.float32)
|
| 23 |
+
for i, (idx, image, text, label, target) in enumerate(data_loader, 0):
|
| 24 |
+
image = image.cuda(non_blocking = True)
|
| 25 |
+
text = text.cuda(non_blocking = True)
|
| 26 |
+
|
| 27 |
+
img_hash, txt_hash, output, output_s = model(image, text)
|
| 28 |
+
|
| 29 |
+
B[idx, :] = torch.sign(output.detach().cpu()).numpy()
|
| 30 |
+
Bi[idx, :] = torch.sign(img_hash.detach().cpu()).numpy()
|
| 31 |
+
Bt[idx, :] = torch.sign(txt_hash.detach().cpu()).numpy()
|
| 32 |
+
|
| 33 |
+
return B, Bi, Bt
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def CalcSim(batch_label, train_label):
|
| 37 |
+
S = (batch_label.mm(train_label.t()) > 0)
|
| 38 |
+
return S
|
| 39 |
+
|
| 40 |
+
# loss
|
| 41 |
+
def Logtrick(x):
|
| 42 |
+
|
| 43 |
+
lt = torch.log(1+torch.exp(-torch.abs(x))).cuda() + torch.max(x, Variable(torch.FloatTensor([0.]).cuda()))
|
| 44 |
+
|
| 45 |
+
return lt
|
| 46 |
+
|
| 47 |
+
class NTXentLoss(nn.Module):
|
| 48 |
+
|
| 49 |
+
"""
|
| 50 |
+
Normalized Temperature-scaled Cross-entropy Loss (NTXent Loss).
|
| 51 |
+
|
| 52 |
+
Contains single-modal and cross-modal implementations.
|
| 53 |
+
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
def __init__(self, temperature=1, eps=1e-6):
|
| 57 |
+
super(NTXentLoss, self).__init__()
|
| 58 |
+
self.temperature = temperature
|
| 59 |
+
self.eps = eps
|
| 60 |
+
|
| 61 |
+
def forward(self, *args, type='orig'):
|
| 62 |
+
if type == 'cross':
|
| 63 |
+
return self.forward_cross_modal(*args)
|
| 64 |
+
if type == 'orig':
|
| 65 |
+
return self.forward_orig(*args)
|
| 66 |
+
if type == 'both':
|
| 67 |
+
return self.forward_orig(*args), self.forward_cross_modal(*args)
|
| 68 |
+
else:
|
| 69 |
+
raise Exception("Wrong NTXent loss type, must be: 'cross', 'orig' or 'both'")
|
| 70 |
+
|
| 71 |
+
def forward_cross_modal(self, mod1, mod2):
|
| 72 |
+
"""
|
| 73 |
+
Cross-modal case:
|
| 74 |
+
|
| 75 |
+
p - positive pair
|
| 76 |
+
n - negative pair
|
| 77 |
+
sim - cosine similarity
|
| 78 |
+
|
| 79 |
+
ix - image modality feature number x
|
| 80 |
+
tx - text modality feature number x
|
| 81 |
+
|
| 82 |
+
Cross-modal case of NTXent doesn't consider similarities inside of the same modality
|
| 83 |
+
|
| 84 |
+
Similarities matrix: exp(sim(i, y))
|
| 85 |
+
+--+--+--+--+--+--+--+
|
| 86 |
+
| |i1|i2|i3|t1|t2|t3|
|
| 87 |
+
Modality +--+--+--+--+--+--+--+
|
| 88 |
+
Features |i1|0 |0 |0 |p |n |n |
|
| 89 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
| 90 |
+
|i1| |t1| |i2|0 |0 |0 |n |p |n |
|
| 91 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
| 92 |
+
|i2| |t2| ------> |i3|0 |0 |0 |n |n |p |
|
| 93 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
| 94 |
+
|i3| |t3| |t1|p |n |n |0 |0 |0 |
|
| 95 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
| 96 |
+
|t2|n |p |n |0 |0 |0 |
|
| 97 |
+
+--+--+--+--+--+--+--+
|
| 98 |
+
|t3|n |n |p |0 |0 |0 |
|
| 99 |
+
+--+--+--+--+--+--+--+
|
| 100 |
+
|
| 101 |
+
:param: mod1: features of the 1st modality
|
| 102 |
+
:param: mod1: features of the 2nd modality
|
| 103 |
+
:return: NTXent loss
|
| 104 |
+
|
| 105 |
+
"""
|
| 106 |
+
# normalize for numerical stability
|
| 107 |
+
mod1 = F.normalize(mod1)
|
| 108 |
+
mod2 = F.normalize(mod2)
|
| 109 |
+
|
| 110 |
+
out = torch.cat([mod1, mod2], dim=0)
|
| 111 |
+
|
| 112 |
+
# cov and sim: [2 * batch_size, 2 * batch_size * world_size]
|
| 113 |
+
|
| 114 |
+
cov = torch.mm(out, out.t().contiguous()) # cosine similarities matrix
|
| 115 |
+
sim = torch.exp(cov / self.temperature)
|
| 116 |
+
|
| 117 |
+
# mask for cross-modal case, nullifies certain regions (see docstring)
|
| 118 |
+
zeros = torch.zeros(mod1.shape[0], mod1.shape[0]).to(sim.device)
|
| 119 |
+
ones = torch.ones(mod1.shape[0], mod1.shape[0]).to(sim.device)
|
| 120 |
+
mask = torch.hstack([torch.vstack([zeros, ones]), torch.vstack([ones, zeros])]).to(sim.device)
|
| 121 |
+
|
| 122 |
+
sim = sim * mask
|
| 123 |
+
|
| 124 |
+
# neg: [2 * batch_size]
|
| 125 |
+
# negative pairs sum
|
| 126 |
+
neg = sim.sum(dim=1)
|
| 127 |
+
|
| 128 |
+
# Positive similarity, pos becomes [2 * batch_size]
|
| 129 |
+
pos = torch.exp(torch.sum(mod1 * mod2, dim=-1) / self.temperature)
|
| 130 |
+
pos = torch.cat([pos, pos], dim=0)
|
| 131 |
+
|
| 132 |
+
loss = -torch.log(pos / (neg + self.eps)).sum()
|
| 133 |
+
return loss
|
| 134 |
+
|
| 135 |
+
def forward_orig(self, out_1, out_2):
|
| 136 |
+
"""
|
| 137 |
+
Implementation taken from:
|
| 138 |
+
https://github.com/PyTorchLightning/lightning-bolts/blob/master/pl_bolts/models/self_supervised/simclr/simclr_module.py
|
| 139 |
+
|
| 140 |
+
p - positive pair
|
| 141 |
+
n - negative pair
|
| 142 |
+
sim - cosine similarity
|
| 143 |
+
e - Euler's number
|
| 144 |
+
|
| 145 |
+
ix - value x of input feature vector i
|
| 146 |
+
tx - value x of input feature vector t
|
| 147 |
+
|
| 148 |
+
Similarities matrix: exp(sim(i, y))
|
| 149 |
+
+--+--+--+--+--+--+--+
|
| 150 |
+
| |i1|i2|i3|t1|t2|t3|
|
| 151 |
+
Modality +--+--+--+--+--+--+--+
|
| 152 |
+
Features |i1|e |n |n |p |n |n |
|
| 153 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
| 154 |
+
|i1| |t1| |i2|n |e |n |n |p |n |
|
| 155 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
| 156 |
+
|i2| |t2| ------> |i3|n |n |e |n |n |p |
|
| 157 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
| 158 |
+
|i3| |t3| |t1|p |n |n |e |n |n |
|
| 159 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
| 160 |
+
|t2|n |p |n |n |e |n |
|
| 161 |
+
+--+--+--+--+--+--+--+
|
| 162 |
+
|t3|n |n |p |n |n |e |
|
| 163 |
+
+--+--+--+--+--+--+--+
|
| 164 |
+
|
| 165 |
+
:param out_1: input feature vector i
|
| 166 |
+
:param out_2: input feature vector t
|
| 167 |
+
:return: NTXent loss
|
| 168 |
+
"""
|
| 169 |
+
out_1 = F.normalize(out_1)
|
| 170 |
+
out_2 = F.normalize(out_2)
|
| 171 |
+
|
| 172 |
+
out = torch.cat([out_1, out_2], dim=0)
|
| 173 |
+
|
| 174 |
+
# cov and sim: [2 * batch_size, 2 * batch_size * world_size]
|
| 175 |
+
# neg: [2 * batch_size]
|
| 176 |
+
cov = torch.mm(out, out.t().contiguous())
|
| 177 |
+
sim = torch.exp(cov / self.temperature)
|
| 178 |
+
neg = sim.sum(dim=-1)
|
| 179 |
+
|
| 180 |
+
# from each row, subtract e^1 to remove similarity measure for x1.x1
|
| 181 |
+
row_sub = torch.Tensor(neg.shape).fill_(math.e).to(neg.device)
|
| 182 |
+
neg = torch.clamp(neg - row_sub, min=self.eps) # clamp for numerical stability
|
| 183 |
+
|
| 184 |
+
# Positive similarity, pos becomes [2 * batch_size]
|
| 185 |
+
o = out_1 * out_2
|
| 186 |
+
pos = torch.exp(torch.sum(out_1 * out_2, dim=-1) / self.temperature)
|
| 187 |
+
pos = torch.cat([pos, pos], dim=0)
|
| 188 |
+
|
| 189 |
+
loss = -torch.log(pos / (neg + self.eps)).mean()
|
| 190 |
+
return loss
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
"""
|
| 195 |
+
|
| 196 |
+
out_hash: real-value code
|
| 197 |
+
|
| 198 |
+
H: total real-value code
|
| 199 |
+
|
| 200 |
+
Bbatch: batch hash code
|
| 201 |
+
|
| 202 |
+
S: similarity
|
| 203 |
+
|
| 204 |
+
num_train: number of train
|
| 205 |
+
|
| 206 |
+
num_batch: batchsize
|
| 207 |
+
|
| 208 |
+
"""
|
| 209 |
+
|
| 210 |
+
def Calcloss(out_hash, H, Bbatch, S, num_train, num_batch, args):
|
| 211 |
+
theta_x = out_hash.float().mm(Variable(H.cuda()).t()) / 2
|
| 212 |
+
|
| 213 |
+
logloss = (Variable(S.cuda()) * theta_x - Logtrick(theta_x)).sum() \
|
| 214 |
+
/ (num_train * num_batch)
|
| 215 |
+
|
| 216 |
+
regterm = (Bbatch - out_hash).pow(2).sum() / (num_train * num_batch)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
loss_p = - logloss + args.lamda * regterm
|
| 220 |
+
return logloss, regterm, loss_p
|
| 221 |
+
|
| 222 |
+
def CalcNTXentLoss(img_hash, txt_hash, out_hash, Criterion, args):
|
| 223 |
+
"""
|
| 224 |
+
Calculate NTXent Loss
|
| 225 |
+
|
| 226 |
+
:param: h_img1: batch of image hashes #1 (original)
|
| 227 |
+
:param: h_img2: batch of image hashes #2 (augmented)
|
| 228 |
+
:param: h_txt1: batch of text hashes #1 (original)
|
| 229 |
+
:param: h_txt2: batch of text hashes #2 (augmented)
|
| 230 |
+
|
| 231 |
+
:returns: NTXent Loss
|
| 232 |
+
"""
|
| 233 |
+
loss_ntxent_inter1 = Criterion(img_hash, txt_hash, type='cross')
|
| 234 |
+
loss_ntxent_inter2 = Criterion(img_hash, out_hash, type='orig')
|
| 235 |
+
loss_ntxent_inter3 = Criterion(out_hash, txt_hash, type='orig')
|
| 236 |
+
# loss_ntxent_intra = Criterion(out_hash, out_hash, type='orig') * args.contrastive_weights[1]
|
| 237 |
+
|
| 238 |
+
loss_ntxent = loss_ntxent_inter1 * args.contrastive[0] + loss_ntxent_inter2 * args.contrastive[1] + loss_ntxent_inter3 * args.contrastive[2]
|
| 239 |
+
return loss_ntxent
|
| 240 |
+
|
| 241 |
+
def Calc_total_loss(H, B, S, num_train, args):
|
| 242 |
+
theta = H.mm(H.t()) / 2
|
| 243 |
+
t1 = (theta*theta).sum() / (num_train * num_train)
|
| 244 |
+
logloss = (- theta * S + Logtrick(Variable(theta)).data).sum()
|
| 245 |
+
regterm = (H - B).pow(2).sum()
|
| 246 |
+
loss_p = logloss + args.lamda * regterm
|
| 247 |
+
|
| 248 |
+
return logloss, regterm, loss_p
|
| 249 |
+
|
| 250 |
+
def CalcHammingDist(B1, B2):
|
| 251 |
+
q = B2.shape[1]
|
| 252 |
+
distH = 0.5 * (q - np.dot(B1, B2.transpose()))
|
| 253 |
+
return distH
|
| 254 |
+
|
| 255 |
+
def CalcMap(qB, rB, queryL, retrievalL):
|
| 256 |
+
# qB: m, q
|
| 257 |
+
# rB: n, q
|
| 258 |
+
# queryL: {0,1}^{mxl}
|
| 259 |
+
# retrievalL: {0,1}^{nxl}
|
| 260 |
+
num_query = queryL.shape[0]
|
| 261 |
+
map = 0
|
| 262 |
+
# print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
|
| 263 |
+
|
| 264 |
+
for iter in range(num_query):
|
| 265 |
+
# 标签匹配
|
| 266 |
+
gnd = (np.dot(queryL[iter, :], retrievalL.transpose()) > 0).astype(np.float32)
|
| 267 |
+
tsum = np.sum(gnd)
|
| 268 |
+
if tsum == 0:
|
| 269 |
+
continue
|
| 270 |
+
# 计算query 与 database之间的汉明距离
|
| 271 |
+
hamm = CalcHammingDist(qB[iter, :], rB)
|
| 272 |
+
# 排序
|
| 273 |
+
ind = np.argsort(hamm)
|
| 274 |
+
# 汉明距离与标签对应
|
| 275 |
+
gnd = gnd[ind]
|
| 276 |
+
count = np.linspace(1, int(tsum), int(tsum))
|
| 277 |
+
# 按照结果排序比对是否标签一致,并返回一致的坐标
|
| 278 |
+
tindex = np.asarray(np.where(gnd == 1)) + 1.0
|
| 279 |
+
map_ = np.mean(count / (tindex))
|
| 280 |
+
# print(map_)
|
| 281 |
+
map = map + map_
|
| 282 |
+
map = map / num_query
|
| 283 |
+
# print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
|
| 284 |
+
|
| 285 |
+
return map
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
def CalcTopMap(qB, rB, queryL, retrievalL, topk = 20):
|
| 289 |
+
# qB: {-1,+1}^{mxq}
|
| 290 |
+
# rB: {-1,+1}^{nxq}
|
| 291 |
+
# queryL: {0,1}^{mxl}
|
| 292 |
+
# retrievalL: {0,1}^{nxl}
|
| 293 |
+
num_query = queryL.shape[0]
|
| 294 |
+
topkmap = 0
|
| 295 |
+
# print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
|
| 296 |
+
for iter in range(num_query):
|
| 297 |
+
gnd = (np.dot(queryL[iter, :], retrievalL.transpose()) > 0).astype(np.float32)
|
| 298 |
+
hamm = CalcHammingDist(qB[iter, :], rB)
|
| 299 |
+
ind = np.argsort(hamm)
|
| 300 |
+
gnd = gnd[ind]
|
| 301 |
+
|
| 302 |
+
tgnd = gnd[0:topk]
|
| 303 |
+
tsum = np.sum(tgnd)
|
| 304 |
+
if tsum == 0:
|
| 305 |
+
continue
|
| 306 |
+
count = np.linspace(1, int(tsum), int(tsum))
|
| 307 |
+
|
| 308 |
+
tindex = np.asarray(np.where(tgnd == 1)) + 1.0
|
| 309 |
+
topkmap_ = np.mean(count / (tindex))
|
| 310 |
+
# print(topkmap_)
|
| 311 |
+
topkmap = topkmap + topkmap_
|
| 312 |
+
topkmap = topkmap / num_query
|
| 313 |
+
# print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
|
| 314 |
+
return topkmap
|
cisen/utils/misc.py
ADDED
|
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from loguru import logger
|
| 6 |
+
import sys
|
| 7 |
+
import inspect
|
| 8 |
+
import math
|
| 9 |
+
import torch
|
| 10 |
+
import torch.distributed as dist
|
| 11 |
+
from collections import OrderedDict
|
| 12 |
+
from torch import nn
|
| 13 |
+
|
| 14 |
+
def init_random_seed(seed=None, device='cuda', rank=0, world_size=1):
|
| 15 |
+
"""Initialize random seed."""
|
| 16 |
+
if seed is not None:
|
| 17 |
+
return seed
|
| 18 |
+
|
| 19 |
+
# Make sure all ranks share the same random seed to prevent
|
| 20 |
+
# some potential bugs. Please refer to
|
| 21 |
+
# https://github.com/open-mmlab/mmdetection/issues/6339
|
| 22 |
+
seed = np.random.randint(2**31)
|
| 23 |
+
if world_size == 1:
|
| 24 |
+
return seed
|
| 25 |
+
|
| 26 |
+
if rank == 0:
|
| 27 |
+
random_num = torch.tensor(seed, dtype=torch.int32, device=device)
|
| 28 |
+
else:
|
| 29 |
+
random_num = torch.tensor(0, dtype=torch.int32, device=device)
|
| 30 |
+
dist.broadcast(random_num, src=0)
|
| 31 |
+
return random_num.item()
|
| 32 |
+
|
| 33 |
+
def set_random_seed(seed, deterministic=False):
|
| 34 |
+
"""Set random seed."""
|
| 35 |
+
random.seed(seed)
|
| 36 |
+
np.random.seed(seed)
|
| 37 |
+
torch.manual_seed(seed)
|
| 38 |
+
torch.cuda.manual_seed_all(seed)
|
| 39 |
+
if deterministic:
|
| 40 |
+
torch.backends.cudnn.deterministic = True
|
| 41 |
+
torch.backends.cudnn.benchmark = False
|
| 42 |
+
|
| 43 |
+
def worker_init_fn(worker_id, num_workers, rank, seed):
|
| 44 |
+
# The seed of each worker equals to
|
| 45 |
+
# num_worker * rank + worker_id + user_seed
|
| 46 |
+
worker_seed = num_workers * rank + worker_id + seed
|
| 47 |
+
np.random.seed(worker_seed)
|
| 48 |
+
random.seed(worker_seed)
|
| 49 |
+
|
| 50 |
+
class AverageMeter(object):
|
| 51 |
+
"""Computes and stores the average and current value"""
|
| 52 |
+
|
| 53 |
+
def __init__(self, name, fmt=":f"):
|
| 54 |
+
self.name = name
|
| 55 |
+
self.fmt = fmt
|
| 56 |
+
self.reset()
|
| 57 |
+
|
| 58 |
+
def reset(self):
|
| 59 |
+
self.val = 0
|
| 60 |
+
self.avg = 0
|
| 61 |
+
self.sum = 0
|
| 62 |
+
self.count = 0
|
| 63 |
+
|
| 64 |
+
def update(self, val, n=1):
|
| 65 |
+
self.val = val
|
| 66 |
+
self.sum += val * n
|
| 67 |
+
self.count += n
|
| 68 |
+
self.avg = self.sum / self.count
|
| 69 |
+
|
| 70 |
+
def __str__(self):
|
| 71 |
+
if self.name == "Lr":
|
| 72 |
+
fmtstr = "{name}={val" + self.fmt + "}"
|
| 73 |
+
else:
|
| 74 |
+
fmtstr = "{name}={val" + self.fmt + "} ({avg" + self.fmt + "})"
|
| 75 |
+
return fmtstr.format(**self.__dict__)
|
| 76 |
+
|
| 77 |
+
class ProgressMeter(object):
|
| 78 |
+
def __init__(self, num_batches, meters, prefix=""):
|
| 79 |
+
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
|
| 80 |
+
self.meters = meters
|
| 81 |
+
self.prefix = prefix
|
| 82 |
+
|
| 83 |
+
def display(self, batch):
|
| 84 |
+
entries = [self.prefix + self.batch_fmtstr.format(batch)]
|
| 85 |
+
entries += [str(meter) for meter in self.meters]
|
| 86 |
+
logger.info(" ".join(entries))
|
| 87 |
+
|
| 88 |
+
def _get_batch_fmtstr(self, num_batches):
|
| 89 |
+
num_digits = len(str(num_batches // 1))
|
| 90 |
+
fmt = "{:" + str(num_digits) + "d}"
|
| 91 |
+
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
|
| 92 |
+
|
| 93 |
+
def get_caller_name(depth=0):
|
| 94 |
+
"""
|
| 95 |
+
Args:
|
| 96 |
+
depth (int): Depth of caller conext, use 0 for caller depth.
|
| 97 |
+
Default value: 0.
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
str: module name of the caller
|
| 101 |
+
"""
|
| 102 |
+
# the following logic is a little bit faster than inspect.stack() logic
|
| 103 |
+
frame = inspect.currentframe().f_back
|
| 104 |
+
for _ in range(depth):
|
| 105 |
+
frame = frame.f_back
|
| 106 |
+
|
| 107 |
+
return frame.f_globals["__name__"]
|
| 108 |
+
|
| 109 |
+
class StreamToLoguru:
|
| 110 |
+
"""
|
| 111 |
+
stream object that redirects writes to a logger instance.
|
| 112 |
+
"""
|
| 113 |
+
def __init__(self, level="INFO", caller_names=("apex", "pycocotools")):
|
| 114 |
+
"""
|
| 115 |
+
Args:
|
| 116 |
+
level(str): log level string of loguru. Default value: "INFO".
|
| 117 |
+
caller_names(tuple): caller names of redirected module.
|
| 118 |
+
Default value: (apex, pycocotools).
|
| 119 |
+
"""
|
| 120 |
+
self.level = level
|
| 121 |
+
self.linebuf = ""
|
| 122 |
+
self.caller_names = caller_names
|
| 123 |
+
|
| 124 |
+
def write(self, buf):
|
| 125 |
+
full_name = get_caller_name(depth=1)
|
| 126 |
+
module_name = full_name.rsplit(".", maxsplit=-1)[0]
|
| 127 |
+
if module_name in self.caller_names:
|
| 128 |
+
for line in buf.rstrip().splitlines():
|
| 129 |
+
# use caller level log
|
| 130 |
+
logger.opt(depth=2).log(self.level, line.rstrip())
|
| 131 |
+
else:
|
| 132 |
+
sys.__stdout__.write(buf)
|
| 133 |
+
|
| 134 |
+
def flush(self):
|
| 135 |
+
pass
|
| 136 |
+
|
| 137 |
+
def redirect_sys_output(log_level="INFO"):
|
| 138 |
+
redirect_logger = StreamToLoguru(log_level)
|
| 139 |
+
sys.stderr = redirect_logger
|
| 140 |
+
sys.stdout = redirect_logger
|
| 141 |
+
|
| 142 |
+
def setup_logger(save_dir, filename="log.txt", mode="a"):
|
| 143 |
+
"""setup logger for training and testing.
|
| 144 |
+
Args:
|
| 145 |
+
save_dir(str): location to save log file
|
| 146 |
+
distributed_rank(int): device rank when multi-gpu environment
|
| 147 |
+
filename (string): log save name.
|
| 148 |
+
mode(str): log file write mode, `append` or `override`. default is `a`.
|
| 149 |
+
|
| 150 |
+
Return:
|
| 151 |
+
logger instance.
|
| 152 |
+
"""
|
| 153 |
+
loguru_format = (
|
| 154 |
+
"<green>{time:YYYY-MM-DD HH:mm:ss}</green> | "
|
| 155 |
+
"<level>{level: <8}</level> | "
|
| 156 |
+
"<cyan>{name}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>")
|
| 157 |
+
|
| 158 |
+
logger.remove()
|
| 159 |
+
save_file = os.path.join(save_dir, filename)
|
| 160 |
+
if mode == "o" and os.path.exists(save_file):
|
| 161 |
+
os.remove(save_file)
|
| 162 |
+
# only keep logger in rank0 process
|
| 163 |
+
|
| 164 |
+
logger.add(
|
| 165 |
+
sys.stderr,
|
| 166 |
+
format=loguru_format,
|
| 167 |
+
level="INFO",
|
| 168 |
+
enqueue=True,
|
| 169 |
+
)
|
| 170 |
+
logger.add(save_file)
|
| 171 |
+
|
| 172 |
+
# redirect stdout/stderr to loguru
|
| 173 |
+
redirect_sys_output("INFO")
|
| 174 |
+
|
| 175 |
+
def trainMetric(pred, label):
|
| 176 |
+
pred = torch.argmax(pred,dim = 1)
|
| 177 |
+
prec = torch.sum(pred == label)
|
| 178 |
+
|
| 179 |
+
return prec
|
| 180 |
+
|
| 181 |
+
# def compute_AP(predicted_probs, true_labels):
|
| 182 |
+
# num_samples, num_classes = true_labels.shape
|
| 183 |
+
#
|
| 184 |
+
# # 初始化用于存储每个类别的 AP 的列表
|
| 185 |
+
# aps = []
|
| 186 |
+
#
|
| 187 |
+
# for class_idx in range(num_classes):
|
| 188 |
+
# class_true_labels = true_labels[:, class_idx]
|
| 189 |
+
# class_similarity_scores = predicted_probs[:, class_idx]
|
| 190 |
+
#
|
| 191 |
+
# # 获取按相似性分数排序后的样本索引
|
| 192 |
+
# sorted_indices = torch.argsort(class_similarity_scores, descending=True)
|
| 193 |
+
#
|
| 194 |
+
# # 计算累积精度和召回率
|
| 195 |
+
# tp = 0
|
| 196 |
+
# fp = 0
|
| 197 |
+
# precision_at_rank = []
|
| 198 |
+
# recall_at_rank = []
|
| 199 |
+
#
|
| 200 |
+
# for rank, idx in enumerate(sorted_indices):
|
| 201 |
+
# if class_true_labels[idx] == 1:
|
| 202 |
+
# tp += 1
|
| 203 |
+
# else:
|
| 204 |
+
# fp += 1
|
| 205 |
+
# precision = tp / (tp + fp)
|
| 206 |
+
# recall = tp / torch.sum(class_true_labels)
|
| 207 |
+
# precision_at_rank.append(precision)
|
| 208 |
+
# recall_at_rank.append(recall)
|
| 209 |
+
#
|
| 210 |
+
# # 计算平均精度(AP)通过计算曲线下的面积
|
| 211 |
+
# precision_at_rank = torch.tensor(precision_at_rank)
|
| 212 |
+
# recall_at_rank = torch.tensor(recall_at_rank)
|
| 213 |
+
# ap = torch.trapz(precision_at_rank, recall_at_rank)
|
| 214 |
+
#
|
| 215 |
+
# aps.append(ap)
|
| 216 |
+
#
|
| 217 |
+
#
|
| 218 |
+
# return aps
|
| 219 |
+
def token_wise_similarity(rep1, rep2, mask=None, chunk_size=1024):
|
| 220 |
+
batch_size1, n_token1, feat_dim = rep1.shape
|
| 221 |
+
batch_size2, n_token2, _ = rep2.shape
|
| 222 |
+
num_folds = math.ceil(batch_size2 / chunk_size)
|
| 223 |
+
output = []
|
| 224 |
+
for i in range(num_folds):
|
| 225 |
+
rep2_seg = rep2[i * chunk_size:(i + 1) * chunk_size]
|
| 226 |
+
out_i = rep1.reshape(-1, feat_dim) @ rep2_seg.reshape(-1, feat_dim).T
|
| 227 |
+
out_i = out_i.reshape(batch_size1, n_token1, -1, n_token2).max(3)[0]
|
| 228 |
+
if mask is None:
|
| 229 |
+
out_i = out_i.mean(1)
|
| 230 |
+
else:
|
| 231 |
+
out_i = out_i.sum(1)
|
| 232 |
+
output.append(out_i)
|
| 233 |
+
output = torch.cat(output, dim=1)
|
| 234 |
+
if mask is not None:
|
| 235 |
+
output = output / mask.sum(1, keepdim=True).clamp_(min=1)
|
| 236 |
+
return output
|
| 237 |
+
|
| 238 |
+
def compute_acc(logits, targets, topk=5):
|
| 239 |
+
targets = targets.squeeze(1)
|
| 240 |
+
p = logits.topk(topk, 1, True, True)[1]
|
| 241 |
+
pred = logits.topk(topk, 1, True, True)[1]
|
| 242 |
+
gt = targets[pred,:]
|
| 243 |
+
|
| 244 |
+
a = gt.view(1, -1)
|
| 245 |
+
|
| 246 |
+
# b = a.expand_as(pred)
|
| 247 |
+
c = gt.eq(targets)
|
| 248 |
+
correct = pred.eq(targets.view(1, -1).expand_as(pred)).contiguous()
|
| 249 |
+
acc_1 = correct[:1].sum(0)
|
| 250 |
+
acc_k = correct[:topk].sum(0)
|
| 251 |
+
return acc_1, acc_k
|
| 252 |
+
|
| 253 |
+
def compute_mAP(predicted_probs, true_labels):
|
| 254 |
+
aps = compute_AP(predicted_probs, true_labels)
|
| 255 |
+
aps = [ap for ap in aps if not torch.isnan(ap)]
|
| 256 |
+
mAP = torch.mean(torch.tensor(aps))
|
| 257 |
+
return mAP
|
| 258 |
+
|
| 259 |
+
def compute_F1(predictions, labels, k_val=5):
|
| 260 |
+
labels = labels.squeeze(1)
|
| 261 |
+
idx = predictions.topk(dim=1, k=k_val)[1]
|
| 262 |
+
predictions.fill_(0)
|
| 263 |
+
predictions.scatter_(dim=1, index=idx, src=torch.ones(predictions.size(0), k_val).to(predictions.device))
|
| 264 |
+
mask = predictions == 1
|
| 265 |
+
TP = (labels[mask] == 1).sum().float()
|
| 266 |
+
tpfp = mask.sum().float()
|
| 267 |
+
tpfn = (labels == 1).sum().float()
|
| 268 |
+
p = TP / tpfp
|
| 269 |
+
r = TP/tpfn
|
| 270 |
+
f1 = 2*p*r/(p+r)
|
| 271 |
+
|
| 272 |
+
return f1, p, r
|
| 273 |
+
|
| 274 |
+
def compute_AP(predictions, labels):
|
| 275 |
+
num_class = predictions.size(1)
|
| 276 |
+
ap = torch.zeros(num_class).to(predictions.device)
|
| 277 |
+
empty_class = 0
|
| 278 |
+
for idx_cls in range(num_class):
|
| 279 |
+
prediction = predictions[:, idx_cls]
|
| 280 |
+
label = labels[:, idx_cls]
|
| 281 |
+
mask = label.abs() == 1
|
| 282 |
+
if (label > 0).sum() == 0:
|
| 283 |
+
empty_class += 1
|
| 284 |
+
continue
|
| 285 |
+
binary_label = torch.clamp(label[mask], min=0, max=1)
|
| 286 |
+
sorted_pred, sort_idx = prediction[mask].sort(descending=True)
|
| 287 |
+
sorted_label = binary_label[sort_idx]
|
| 288 |
+
tmp = (sorted_label == 1).float()
|
| 289 |
+
tp = tmp.cumsum(0)
|
| 290 |
+
fp = (sorted_label != 1).float().cumsum(0)
|
| 291 |
+
num_pos = binary_label.sum()
|
| 292 |
+
rec = tp/num_pos
|
| 293 |
+
prec = tp/(tp+fp)
|
| 294 |
+
ap_cls = (tmp*prec).sum()/num_pos
|
| 295 |
+
ap[idx_cls].copy_(ap_cls)
|
| 296 |
+
return ap, empty_class
|
| 297 |
+
|
| 298 |
+
def compute_ACG(predictions, labels, k_val=5):
|
| 299 |
+
gt = labels.squeeze(1)
|
| 300 |
+
idx = predictions.topk(dim=1, k=k_val)[1]
|
| 301 |
+
pred = gt[idx, :]
|
| 302 |
+
pred[pred == -1] = 0
|
| 303 |
+
c = labels.eq(pred) # common label
|
| 304 |
+
r = c.sum(-1) # similarity level
|
| 305 |
+
# acg
|
| 306 |
+
acg = c.sum(-1).sum(-1) / k_val
|
| 307 |
+
lg = torch.log1p(torch.arange(1, k_val+1, 1) ).to(r.device)
|
| 308 |
+
# dcg
|
| 309 |
+
dcg = (torch.pow(2, r) - 1) / lg
|
| 310 |
+
ir, _ = r.sort(-1, descending=True)
|
| 311 |
+
idcg = (torch.pow(2, ir) - 1) / lg
|
| 312 |
+
idcg[idcg == 0] = 1e-6
|
| 313 |
+
ndcg = dcg.sum(-1) / idcg.sum(-1)
|
| 314 |
+
# map
|
| 315 |
+
pos = r.clone()
|
| 316 |
+
pos[pos != 0] = 1
|
| 317 |
+
j = torch.arange(1, k_val + 1, 1).to(pos.device)
|
| 318 |
+
P = torch.cumsum(pos, 1) / j
|
| 319 |
+
Npos = torch.sum(pos, 1)
|
| 320 |
+
Npos[Npos == 0] = 1
|
| 321 |
+
AP = torch.sum(P * pos, 1)
|
| 322 |
+
map = torch.sum(P * pos, 1) / Npos
|
| 323 |
+
# wmap
|
| 324 |
+
acgj = torch.cumsum(r, 1) / j
|
| 325 |
+
wmap = torch.sum(acgj * pos, 1) / Npos
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
return acg, ndcg, map, wmap
|
| 330 |
+
|
| 331 |
+
def compute_mAPw(predictions, labels, k_val=5):
|
| 332 |
+
gt = labels.squeeze(1)
|
| 333 |
+
idx = predictions.topk(dim=1, k=k_val)[1]
|
| 334 |
+
pred = gt[idx, :]
|
| 335 |
+
pred[pred == -1] = 0
|
| 336 |
+
c = labels.eq(pred)
|
| 337 |
+
r = c.sum(-1)
|
| 338 |
+
pos = r.clone()
|
| 339 |
+
pos[pos != 0] = 1
|
| 340 |
+
P = torch.cumsum(pos) / torch.arange(1, k_val+1, 1)
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
def adjust_learning_rate(optimizer, epoch, args):
|
| 344 |
+
"""Decay the learning rate with half-cycle cosine after warmup"""
|
| 345 |
+
if epoch < args.warmup_epochs:
|
| 346 |
+
lr = args.base_lr * epoch / args.warmup_epochs
|
| 347 |
+
else:
|
| 348 |
+
lr = args.min_lr + (args.base_lr - args.min_lr) * 0.5 * \
|
| 349 |
+
(1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
|
| 350 |
+
for param_group in optimizer.param_groups:
|
| 351 |
+
if "lr_scale" in param_group:
|
| 352 |
+
param_group["lr"] = lr * param_group["lr_scale"]
|
| 353 |
+
else:
|
| 354 |
+
param_group["lr"] = lr
|
| 355 |
+
return lr
|
| 356 |
+
|
| 357 |
+
def load_ckpt(weight_dir, model, map_location, args):
|
| 358 |
+
checkpoint = torch.load(weight_dir, map_location=map_location)
|
| 359 |
+
if args.resume:
|
| 360 |
+
resume_epoch = checkpoint['epoch']
|
| 361 |
+
else:
|
| 362 |
+
resume_epoch = 0
|
| 363 |
+
pre_weight = checkpoint['state_dict']
|
| 364 |
+
|
| 365 |
+
new_pre_weight = OrderedDict()
|
| 366 |
+
# pre_weight =torch.jit.load(resume)
|
| 367 |
+
model_dict = model.state_dict()
|
| 368 |
+
new_model_dict = OrderedDict()
|
| 369 |
+
for k, v in pre_weight.items():
|
| 370 |
+
new_k = k.replace('module.', '') if 'module' in k else k
|
| 371 |
+
# 针对batch_size=1
|
| 372 |
+
# new_k = new_k.replace('1','2') if 'proj.1' in new_k else new_k
|
| 373 |
+
new_pre_weight[new_k] = v
|
| 374 |
+
# for k, v in model_dict.items():
|
| 375 |
+
# new_k = k.replace('module.', '') if 'module' in k else k
|
| 376 |
+
# new_model_dict[new_k] = v
|
| 377 |
+
pre_weight = new_pre_weight # ["model_state"]
|
| 378 |
+
# pretrained_dict = {}
|
| 379 |
+
# t_n = 0
|
| 380 |
+
# v_n = 0
|
| 381 |
+
# for k, v in pre_weight.items():
|
| 382 |
+
# t_n += 1
|
| 383 |
+
# if k in new_model_dict:
|
| 384 |
+
# k = 'module.' + k if 'module' not in k else k
|
| 385 |
+
# v_n += 1
|
| 386 |
+
# pretrained_dict[k] = v
|
| 387 |
+
# print(k)
|
| 388 |
+
# os._exit()
|
| 389 |
+
# print(f'{v_n}/{t_n} weights have been loaded!')
|
| 390 |
+
model_dict.update(pre_weight)
|
| 391 |
+
model.load_state_dict(model_dict, strict=False)
|
| 392 |
+
|
| 393 |
+
return model, resume_epoch
|
| 394 |
+
|
| 395 |
+
def load_ckpt_fpn(weight_dir, model, map_location):
|
| 396 |
+
|
| 397 |
+
pre_weight = torch.load(weight_dir, map_location=map_location)['state_dict']
|
| 398 |
+
epoch = torch.load(weight_dir, map_location=map_location)['epoch']
|
| 399 |
+
new_pre_weight = OrderedDict()
|
| 400 |
+
# pre_weight =torch.jit.load(resume)
|
| 401 |
+
model_dict = model.state_dict()
|
| 402 |
+
|
| 403 |
+
for k, v in pre_weight.items():
|
| 404 |
+
new_k = k.replace('module.', '') if 'module' in k else k
|
| 405 |
+
# if not (new_k.startswith('FPN') or new_k.startswith('gap')):
|
| 406 |
+
new_pre_weight[new_k] = v
|
| 407 |
+
|
| 408 |
+
pre_weight = new_pre_weight
|
| 409 |
+
# ["model_state"]
|
| 410 |
+
model_dict.update(pre_weight)
|
| 411 |
+
model.load_state_dict(model_dict, strict=True)
|
| 412 |
+
|
| 413 |
+
return model, epoch
|
| 414 |
+
def load_ckpt_old(weight_dir, model, map_location):
|
| 415 |
+
|
| 416 |
+
pre_weight = torch.load(weight_dir, map_location=map_location)['state_dict']
|
| 417 |
+
epoch = torch.load(weight_dir, map_location=map_location)['epoch']
|
| 418 |
+
new_pre_weight = OrderedDict()
|
| 419 |
+
# pre_weight =torch.jit.load(resume)
|
| 420 |
+
model_dict = model.state_dict()
|
| 421 |
+
|
| 422 |
+
for k, v in pre_weight.items():
|
| 423 |
+
new_k = k.replace('module.', '') if 'module' in k else k
|
| 424 |
+
if not (new_k.startswith('FPN') or new_k.startswith('gap')):
|
| 425 |
+
new_pre_weight[new_k] = v
|
| 426 |
+
|
| 427 |
+
pre_weight = new_pre_weight
|
| 428 |
+
# ["model_state"]
|
| 429 |
+
model_dict.update(pre_weight)
|
| 430 |
+
model.load_state_dict(model_dict, strict=False)
|
| 431 |
+
|
| 432 |
+
return model, epoch
|
| 433 |
+
|
| 434 |
+
def compare_ckpt(model1, model2):
|
| 435 |
+
V = dict()
|
| 436 |
+
for k, v in model1.items():
|
| 437 |
+
if k.startswith('projT'):
|
| 438 |
+
V[k] = v
|
| 439 |
+
|
| 440 |
+
for k, v in model2.items():
|
| 441 |
+
if k in sorted(V.keys()):
|
| 442 |
+
model2[k] = V[k]
|
| 443 |
+
|
| 444 |
+
return model2
|
cisen/utils/simple_tokenizer.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gzip
|
| 2 |
+
import html
|
| 3 |
+
import os
|
| 4 |
+
from functools import lru_cache
|
| 5 |
+
|
| 6 |
+
import ftfy
|
| 7 |
+
import regex as re
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@lru_cache()
|
| 11 |
+
def default_bpe():
|
| 12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@lru_cache()
|
| 16 |
+
def bytes_to_unicode():
|
| 17 |
+
"""
|
| 18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
| 19 |
+
The reversible bpe codes work on unicode strings.
|
| 20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
| 21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
| 22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
| 23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
| 24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
| 25 |
+
"""
|
| 26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
| 27 |
+
cs = bs[:]
|
| 28 |
+
n = 0
|
| 29 |
+
for b in range(2**8):
|
| 30 |
+
if b not in bs:
|
| 31 |
+
bs.append(b)
|
| 32 |
+
cs.append(2**8+n)
|
| 33 |
+
n += 1
|
| 34 |
+
cs = [chr(n) for n in cs]
|
| 35 |
+
return dict(zip(bs, cs))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_pairs(word):
|
| 39 |
+
"""Return set of symbol pairs in a word.
|
| 40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 41 |
+
"""
|
| 42 |
+
pairs = set()
|
| 43 |
+
prev_char = word[0]
|
| 44 |
+
for char in word[1:]:
|
| 45 |
+
pairs.add((prev_char, char))
|
| 46 |
+
prev_char = char
|
| 47 |
+
return pairs
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def basic_clean(text):
|
| 51 |
+
text = ftfy.fix_text(text)
|
| 52 |
+
text = html.unescape(html.unescape(text))
|
| 53 |
+
return text.strip()
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def whitespace_clean(text):
|
| 57 |
+
text = re.sub(r'\s+', ' ', text)
|
| 58 |
+
text = text.strip()
|
| 59 |
+
return text
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class SimpleTokenizer(object):
|
| 63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
| 64 |
+
self.byte_encoder = bytes_to_unicode()
|
| 65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
| 67 |
+
merges = merges[1:49152-256-2+1]
|
| 68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
| 69 |
+
vocab = list(bytes_to_unicode().values())
|
| 70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
| 71 |
+
for merge in merges:
|
| 72 |
+
vocab.append(''.join(merge))
|
| 73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
| 74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
| 75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
| 77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
| 78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
| 79 |
+
|
| 80 |
+
def bpe(self, token):
|
| 81 |
+
if token in self.cache:
|
| 82 |
+
return self.cache[token]
|
| 83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
| 84 |
+
pairs = get_pairs(word)
|
| 85 |
+
|
| 86 |
+
if not pairs:
|
| 87 |
+
return token+'</w>'
|
| 88 |
+
|
| 89 |
+
while True:
|
| 90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
| 91 |
+
if bigram not in self.bpe_ranks:
|
| 92 |
+
break
|
| 93 |
+
first, second = bigram
|
| 94 |
+
new_word = []
|
| 95 |
+
i = 0
|
| 96 |
+
while i < len(word):
|
| 97 |
+
try:
|
| 98 |
+
j = word.index(first, i)
|
| 99 |
+
new_word.extend(word[i:j])
|
| 100 |
+
i = j
|
| 101 |
+
except:
|
| 102 |
+
new_word.extend(word[i:])
|
| 103 |
+
break
|
| 104 |
+
|
| 105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
| 106 |
+
new_word.append(first+second)
|
| 107 |
+
i += 2
|
| 108 |
+
else:
|
| 109 |
+
new_word.append(word[i])
|
| 110 |
+
i += 1
|
| 111 |
+
new_word = tuple(new_word)
|
| 112 |
+
word = new_word
|
| 113 |
+
if len(word) == 1:
|
| 114 |
+
break
|
| 115 |
+
else:
|
| 116 |
+
pairs = get_pairs(word)
|
| 117 |
+
word = ' '.join(word)
|
| 118 |
+
self.cache[token] = word
|
| 119 |
+
return word
|
| 120 |
+
|
| 121 |
+
def encode(self, text):
|
| 122 |
+
bpe_tokens = []
|
| 123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
| 124 |
+
for token in re.findall(self.pat, text):
|
| 125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
| 126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
| 127 |
+
return bpe_tokens
|
| 128 |
+
|
| 129 |
+
def decode(self, tokens):
|
| 130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
| 131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
| 132 |
+
return text
|