|
|
import gradio as gr |
|
|
import numpy as np |
|
|
import random |
|
|
from PIL import Image |
|
|
|
|
|
|
|
|
from peft import PeftModel |
|
|
from diffusers import DiffusionPipeline, StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline |
|
|
from diffusers.utils import load_image |
|
|
import torch |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
model_repo_id = "CompVis/stable-diffusion-v1-4" |
|
|
|
|
|
torch_dtype = torch.float16 |
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
|
pipe = pipe.to(device) |
|
|
|
|
|
pipe.safety_checker = None |
|
|
pipe.requires_safety_checker = False |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
MAX_IMAGE_SIZE = 512 |
|
|
|
|
|
|
|
|
|
|
|
def load_model(model_id, lora_strength, use_controlnet=False, control_mode="edge_detection", use_ip_adapter=False, control_strength_ip=0.0): |
|
|
global pipe |
|
|
if pipe is not None: |
|
|
del pipe |
|
|
torch.cuda.empty_cache() |
|
|
try: |
|
|
if control_mode == "edge_detection" and (model_id == "CompVis/stable-diffusion-v1-4" or model_id == "alexanz/SD14_lora_pusheen"): |
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch_dtype) |
|
|
elif control_mode == "pose_estimation"and (model_id == "CompVis/stable-diffusion-v1-4" or model_id == "alexanz/SD14_lora_pusheen"): |
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch_dtype) |
|
|
if control_mode == "edge_detection" and (model_id == "alexanz/SD15_lora_pusheen"): |
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", torch_dtype=torch_dtype) |
|
|
elif control_mode == "pose_estimation"and (model_id == "alexanz/SD15_lora_pusheen"): |
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch_dtype) |
|
|
|
|
|
if model_id == "CompVis/stable-diffusion-v1-4": |
|
|
if use_controlnet: |
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
|
model_id, |
|
|
safety_checker=None, |
|
|
controlnet=controlnet, |
|
|
torch_dtype=torch_dtype |
|
|
) |
|
|
else: |
|
|
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) |
|
|
|
|
|
elif model_id == "alexanz/SD14_lora_pusheen": |
|
|
if use_controlnet: |
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
|
"CompVis/stable-diffusion-v1-4", |
|
|
safety_checker=None, |
|
|
controlnet=controlnet, |
|
|
torch_dtype=torch_dtype |
|
|
) |
|
|
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, scaling=lora_strength, torch_dtype=torch_dtype) |
|
|
else: |
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch_dtype) |
|
|
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, scaling=lora_strength) |
|
|
|
|
|
elif model_id == "alexanz/SD15_lora_pusheen": |
|
|
if use_controlnet: |
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
|
"stable-diffusion-v1-5/stable-diffusion-v1-5", |
|
|
safety_checker=None, |
|
|
controlnet=controlnet, |
|
|
torch_dtype=torch_dtype |
|
|
) |
|
|
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, scaling=lora_strength, torch_dtype=torch_dtype) |
|
|
else: |
|
|
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype) |
|
|
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, scaling=lora_strength) |
|
|
|
|
|
if use_ip_adapter: |
|
|
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") |
|
|
pipe.set_ip_adapter_scale(control_strength_ip) |
|
|
|
|
|
pipe = pipe.to(device) |
|
|
pipe.safety_checker = None |
|
|
pipe.requires_safety_checker = False |
|
|
pipe.enable_model_cpu_offload() |
|
|
return f"Model {model_id} loaded with ControlNet: {use_controlnet}, mode: {control_mode}" |
|
|
except Exception as e: |
|
|
return f"Error: {str(e)}" |
|
|
|
|
|
|
|
|
def infer( |
|
|
prompt, |
|
|
negative_prompt, |
|
|
seed, |
|
|
randomize_seed, |
|
|
width, |
|
|
height, |
|
|
lora_strength, |
|
|
guidance_scale, |
|
|
num_inference_steps, |
|
|
use_controlnet, |
|
|
control_image_cont, |
|
|
control_strength_cont, |
|
|
model_dropdown, |
|
|
control_mode, |
|
|
use_ip_adapter, |
|
|
control_strength_ip, |
|
|
control_image_ip, |
|
|
progress=gr.Progress(track_tqdm=True), |
|
|
): |
|
|
load_status = load_model( |
|
|
model_dropdown, |
|
|
lora_strength, |
|
|
use_controlnet, |
|
|
control_mode, |
|
|
use_ip_adapter, |
|
|
control_strength_ip |
|
|
) |
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
|
|
if use_controlnet and control_image_cont is None: |
|
|
return None, seed, "⚠️ ControlNet need control_image!" |
|
|
|
|
|
if use_ip_adapter and control_image_ip is None: |
|
|
return None, seed, "⚠️ IP-adapter need control_image!" |
|
|
|
|
|
if use_controlnet: |
|
|
control_image_cont= Image.fromarray(control_image_cont) |
|
|
control_strength_cont = float(control_strength_cont) |
|
|
if use_ip_adapter: |
|
|
control_image_ip = Image.fromarray(control_image_ip) |
|
|
|
|
|
image = pipe( |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
guidance_scale=guidance_scale, |
|
|
num_inference_steps=num_inference_steps, |
|
|
width=width, |
|
|
height=height, |
|
|
generator=generator, |
|
|
image=control_image_cont if use_controlnet else None, |
|
|
controlnet_conditioning_scale=control_strength_cont if use_controlnet else None, |
|
|
ip_adapter_image=control_image_ip if use_ip_adapter else None |
|
|
).images[0] |
|
|
|
|
|
return image, seed, "Model ready" |
|
|
|
|
|
|
|
|
examples = [ |
|
|
"Sticker of Pusheen. Cartoon image of a gray cat with cap of tea.", |
|
|
"Sticker of Pusheen. Gray cat holding a guitar, sitting under a disco ball, with colorful lights and a happy face.", |
|
|
"Sticker of Pusheen. A cute cartoon fluffy cat.", |
|
|
] |
|
|
|
|
|
css = """ |
|
|
#col-container { |
|
|
margin: 0 auto; |
|
|
max-width: 640px; |
|
|
} |
|
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
with gr.Column(elem_id="col-container"): |
|
|
gr.Markdown(" # Text-to-Image Gradio Template") |
|
|
model_dropdown = gr.Dropdown(label="Model ID", |
|
|
choices=["alexanz/SD14_lora_pusheen", "CompVis/stable-diffusion-v1-4", "alexanz/SD15_lora_pusheen"], |
|
|
value="CompVis/stable-diffusion-v1-4") |
|
|
model_status = gr.Textbox(label="Model Status", interactive=False) |
|
|
|
|
|
with gr.Row(): |
|
|
prompt = gr.Text( |
|
|
label="Prompt", |
|
|
show_label=False, |
|
|
max_lines=1, |
|
|
placeholder="Enter your prompt", |
|
|
container=False, |
|
|
) |
|
|
|
|
|
run_button = gr.Button("Run", scale=0, variant="primary") |
|
|
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
negative_prompt = gr.Text( |
|
|
label="Negative prompt", |
|
|
max_lines=1, |
|
|
placeholder="Enter a negative prompt", |
|
|
) |
|
|
|
|
|
lora_strength = gr.Slider( |
|
|
label="Lora strength", |
|
|
minimum=0.0, |
|
|
maximum=1.0, |
|
|
step=0.1, |
|
|
value=1.0, |
|
|
) |
|
|
|
|
|
seed = gr.Slider( |
|
|
label="Seed", |
|
|
minimum=0, |
|
|
maximum=MAX_SEED, |
|
|
step=1, |
|
|
value=0, |
|
|
) |
|
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
|
|
with gr.Row(): |
|
|
width = gr.Slider( |
|
|
label="Width", |
|
|
minimum=256, |
|
|
maximum=MAX_IMAGE_SIZE, |
|
|
step=32, |
|
|
value=512, |
|
|
) |
|
|
|
|
|
height = gr.Slider( |
|
|
label="Height", |
|
|
minimum=256, |
|
|
maximum=MAX_IMAGE_SIZE, |
|
|
step=32, |
|
|
value=512, |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
guidance_scale = gr.Slider( |
|
|
label="Guidance scale", |
|
|
minimum=0.0, |
|
|
maximum=10.0, |
|
|
step=0.1, |
|
|
value=7.5, |
|
|
) |
|
|
|
|
|
num_inference_steps = gr.Slider( |
|
|
label="Number of inference steps", |
|
|
minimum=1, |
|
|
maximum=50, |
|
|
step=1, |
|
|
value=20, |
|
|
) |
|
|
|
|
|
use_controlnet = gr.Checkbox(label="Use ControlNet", value=False) |
|
|
with gr.Accordion("ControlNet Settings", open=True, visible=False) as controlnet_settings: |
|
|
control_mode = gr.Dropdown( |
|
|
label="ControlNet Mode", |
|
|
choices=["edge_detection", "pose_estimation"], |
|
|
value="edge_detection" |
|
|
) |
|
|
control_strength_cont = gr.Slider( |
|
|
label="Control Strength", |
|
|
minimum=0.0, |
|
|
maximum=2.0, |
|
|
step=0.1, |
|
|
value=1.0 |
|
|
) |
|
|
control_image_cont = gr.Image(label="Control Image", type="numpy") |
|
|
|
|
|
use_ip_adapter = gr.Checkbox(label="Use IP-adapter", value=False) |
|
|
with gr.Accordion("IP-adapter Settings", open=True, visible=False) as ip_adapter_settings: |
|
|
control_strength_ip = gr.Slider( |
|
|
label="Control Strength", |
|
|
minimum=0.0, |
|
|
maximum=2.0, |
|
|
step=0.1, |
|
|
value=1.0 |
|
|
) |
|
|
control_image_ip = gr.Image(label="Control Image (IP-adapter)", type="numpy") |
|
|
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
|
|
|
|
gr.on( |
|
|
triggers=[run_button.click, prompt.submit], |
|
|
fn=infer, |
|
|
inputs=[ |
|
|
prompt, |
|
|
negative_prompt, |
|
|
seed, |
|
|
randomize_seed, |
|
|
width, |
|
|
height, |
|
|
lora_strength, |
|
|
guidance_scale, |
|
|
num_inference_steps, |
|
|
use_controlnet, |
|
|
control_image_cont, |
|
|
control_strength_cont, |
|
|
model_dropdown, |
|
|
control_mode, |
|
|
use_ip_adapter, |
|
|
control_strength_ip, |
|
|
control_image_ip |
|
|
], |
|
|
outputs=[result, seed, model_status], |
|
|
) |
|
|
|
|
|
use_controlnet.change( |
|
|
fn=lambda x: gr.update(visible=x, value=None), |
|
|
inputs=[use_controlnet], |
|
|
outputs=[controlnet_settings] |
|
|
) |
|
|
|
|
|
use_ip_adapter.change( |
|
|
fn=lambda x: gr.update(visible=x, value=None), |
|
|
inputs=[use_ip_adapter], |
|
|
outputs=[ip_adapter_settings] |
|
|
) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |