Spaces:
Running
Running
ibrahimabdelaal
commited on
Commit
·
f4e5b40
1
Parent(s):
e682a6b
Add Gradio Space with default reference audio and diacritized text support
Browse files- .gitattributes +1 -0
- .gitignore +29 -0
- app.py +408 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.py[cod]
|
| 3 |
+
*$py.class
|
| 4 |
+
*.so
|
| 5 |
+
.Python
|
| 6 |
+
build/
|
| 7 |
+
develop-eggs/
|
| 8 |
+
dist/
|
| 9 |
+
downloads/
|
| 10 |
+
eggs/
|
| 11 |
+
.eggs/
|
| 12 |
+
lib/
|
| 13 |
+
lib64/
|
| 14 |
+
parts/
|
| 15 |
+
sdist/
|
| 16 |
+
var/
|
| 17 |
+
wheels/
|
| 18 |
+
*.egg-info/
|
| 19 |
+
.installed.cfg
|
| 20 |
+
*.egg
|
| 21 |
+
.pytest_cache/
|
| 22 |
+
.venv/
|
| 23 |
+
venv/
|
| 24 |
+
ENV/
|
| 25 |
+
.DS_Store
|
| 26 |
+
*.wav
|
| 27 |
+
*.mp3
|
| 28 |
+
flagged/
|
| 29 |
+
gradio_queue.db
|
app.py
ADDED
|
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import soundfile as sf
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from transformers import AutoProcessor, AutoModel
|
| 7 |
+
import tempfile
|
| 8 |
+
import os
|
| 9 |
+
import spaces
|
| 10 |
+
import shutil
|
| 11 |
+
|
| 12 |
+
# Import helper functions from your existing code
|
| 13 |
+
from typing import List
|
| 14 |
+
|
| 15 |
+
def smart_text_split_arabic(text: str, max_length: int = 300) -> List[str]:
|
| 16 |
+
"""Intelligently split Arabic text into chunks while preserving context."""
|
| 17 |
+
if len(text) <= max_length:
|
| 18 |
+
return [text]
|
| 19 |
+
|
| 20 |
+
chunks = []
|
| 21 |
+
remaining_text = text.strip()
|
| 22 |
+
|
| 23 |
+
while remaining_text:
|
| 24 |
+
if len(remaining_text) <= max_length:
|
| 25 |
+
chunks.append(remaining_text)
|
| 26 |
+
break
|
| 27 |
+
|
| 28 |
+
chunk = remaining_text[:max_length]
|
| 29 |
+
split_point = -1
|
| 30 |
+
|
| 31 |
+
# Priority 1: Sentence endings
|
| 32 |
+
sentence_endings = ['.', '!', '?', '۔']
|
| 33 |
+
for i in range(len(chunk) - 1, max(0, max_length - 100), -1):
|
| 34 |
+
if chunk[i] in sentence_endings:
|
| 35 |
+
if i == len(chunk) - 1 or chunk[i + 1] == ' ':
|
| 36 |
+
split_point = i + 1
|
| 37 |
+
break
|
| 38 |
+
|
| 39 |
+
# Priority 2: Arabic clause separators
|
| 40 |
+
if split_point == -1:
|
| 41 |
+
arabic_separators = ['،', '؛', ':', ';', ',']
|
| 42 |
+
for i in range(len(chunk) - 1, max(0, max_length - 50), -1):
|
| 43 |
+
if chunk[i] in arabic_separators:
|
| 44 |
+
if i == len(chunk) - 1 or chunk[i + 1] == ' ':
|
| 45 |
+
split_point = i + 1
|
| 46 |
+
break
|
| 47 |
+
|
| 48 |
+
# Priority 3: Word boundaries
|
| 49 |
+
if split_point == -1:
|
| 50 |
+
for i in range(len(chunk) - 1, max(0, max_length - 30), -1):
|
| 51 |
+
if chunk[i] == ' ':
|
| 52 |
+
split_point = i + 1
|
| 53 |
+
break
|
| 54 |
+
|
| 55 |
+
if split_point == -1:
|
| 56 |
+
split_point = max_length
|
| 57 |
+
|
| 58 |
+
current_chunk = remaining_text[:split_point].strip()
|
| 59 |
+
if current_chunk:
|
| 60 |
+
chunks.append(current_chunk)
|
| 61 |
+
|
| 62 |
+
remaining_text = remaining_text[split_point:].strip()
|
| 63 |
+
|
| 64 |
+
return chunks
|
| 65 |
+
|
| 66 |
+
def apply_crossfade(audio1: np.ndarray, audio2: np.ndarray,
|
| 67 |
+
fade_duration: float = 0.1, sample_rate: int = 24000) -> np.ndarray:
|
| 68 |
+
"""Apply crossfade between two audio segments."""
|
| 69 |
+
fade_samples = int(fade_duration * sample_rate)
|
| 70 |
+
fade_samples = min(fade_samples, len(audio1), len(audio2))
|
| 71 |
+
|
| 72 |
+
if fade_samples <= 0:
|
| 73 |
+
return np.concatenate([audio1, audio2])
|
| 74 |
+
|
| 75 |
+
fade_out = np.linspace(1.0, 0.0, fade_samples)
|
| 76 |
+
fade_in = np.linspace(0.0, 1.0, fade_samples)
|
| 77 |
+
|
| 78 |
+
audio1_faded = audio1.copy()
|
| 79 |
+
audio2_faded = audio2.copy()
|
| 80 |
+
|
| 81 |
+
audio1_faded[-fade_samples:] *= fade_out
|
| 82 |
+
audio2_faded[:fade_samples] *= fade_in
|
| 83 |
+
|
| 84 |
+
overlap = audio1_faded[-fade_samples:] + audio2_faded[:fade_samples]
|
| 85 |
+
|
| 86 |
+
result = np.concatenate([
|
| 87 |
+
audio1_faded[:-fade_samples],
|
| 88 |
+
overlap,
|
| 89 |
+
audio2_faded[fade_samples:]
|
| 90 |
+
])
|
| 91 |
+
|
| 92 |
+
return result
|
| 93 |
+
|
| 94 |
+
def normalize_audio(audio: np.ndarray, target_rms: float = 0.1) -> np.ndarray:
|
| 95 |
+
"""Normalize audio to target RMS level."""
|
| 96 |
+
if len(audio) == 0:
|
| 97 |
+
return audio
|
| 98 |
+
|
| 99 |
+
current_rms = np.sqrt(np.mean(audio ** 2))
|
| 100 |
+
if current_rms > 1e-6:
|
| 101 |
+
scaling_factor = target_rms / current_rms
|
| 102 |
+
return audio * scaling_factor
|
| 103 |
+
return audio
|
| 104 |
+
|
| 105 |
+
def remove_silence(audio: np.ndarray, sample_rate: int = 24000,
|
| 106 |
+
silence_threshold: float = 0.01, min_silence_duration: float = 0.5) -> np.ndarray:
|
| 107 |
+
"""Remove long silences from audio."""
|
| 108 |
+
if len(audio) == 0:
|
| 109 |
+
return audio
|
| 110 |
+
|
| 111 |
+
frame_size = int(0.05 * sample_rate)
|
| 112 |
+
min_silence_frames = int(min_silence_duration / 0.05)
|
| 113 |
+
|
| 114 |
+
frames = []
|
| 115 |
+
for i in range(0, len(audio), frame_size):
|
| 116 |
+
frame = audio[i:i + frame_size]
|
| 117 |
+
if len(frame) < frame_size:
|
| 118 |
+
frames.append(frame)
|
| 119 |
+
break
|
| 120 |
+
|
| 121 |
+
rms = np.sqrt(np.mean(frame ** 2))
|
| 122 |
+
frames.append(frame if rms > silence_threshold else None)
|
| 123 |
+
|
| 124 |
+
result_frames = []
|
| 125 |
+
silence_count = 0
|
| 126 |
+
|
| 127 |
+
for frame in frames:
|
| 128 |
+
if frame is None:
|
| 129 |
+
silence_count += 1
|
| 130 |
+
else:
|
| 131 |
+
if silence_count > 0:
|
| 132 |
+
if silence_count >= min_silence_frames:
|
| 133 |
+
for _ in range(min(2, silence_count)):
|
| 134 |
+
result_frames.append(np.zeros(frame_size, dtype=np.float32))
|
| 135 |
+
else:
|
| 136 |
+
for _ in range(silence_count):
|
| 137 |
+
result_frames.append(np.zeros(frame_size, dtype=np.float32))
|
| 138 |
+
|
| 139 |
+
result_frames.append(frame)
|
| 140 |
+
silence_count = 0
|
| 141 |
+
|
| 142 |
+
if not result_frames:
|
| 143 |
+
return np.array([], dtype=np.float32)
|
| 144 |
+
|
| 145 |
+
return np.concatenate(result_frames)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# Global model instance
|
| 149 |
+
model_cache = {}
|
| 150 |
+
|
| 151 |
+
def load_model(model_id: str = "IbrahimSalah/Arabic-TTS-Spark"):
|
| 152 |
+
"""Load the TTS model (cached)."""
|
| 153 |
+
if "model" not in model_cache:
|
| 154 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 155 |
+
print(f"Loading model on {device}...")
|
| 156 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 157 |
+
model = AutoModel.from_pretrained(model_id, trust_remote_code=True).eval().to(device)
|
| 158 |
+
processor.model = model
|
| 159 |
+
model_cache["model"] = model
|
| 160 |
+
model_cache["processor"] = processor
|
| 161 |
+
model_cache["device"] = device
|
| 162 |
+
print("Model loaded successfully!")
|
| 163 |
+
return model_cache["model"], model_cache["processor"], model_cache["device"]
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
@spaces.GPU(duration=120) # Request GPU for 120 seconds
|
| 167 |
+
def generate_speech(
|
| 168 |
+
text: str,
|
| 169 |
+
reference_audio,
|
| 170 |
+
reference_transcript: str,
|
| 171 |
+
temperature: float = 0.8,
|
| 172 |
+
top_p: float = 0.95,
|
| 173 |
+
max_chunk_length: int = 300,
|
| 174 |
+
crossfade_duration: float = 0.08,
|
| 175 |
+
progress=gr.Progress()
|
| 176 |
+
):
|
| 177 |
+
"""Generate speech from text using Spark TTS."""
|
| 178 |
+
try:
|
| 179 |
+
# Load model
|
| 180 |
+
progress(0.1, desc="Loading model...")
|
| 181 |
+
model, processor, device = load_model()
|
| 182 |
+
|
| 183 |
+
# Validate inputs
|
| 184 |
+
if not text.strip():
|
| 185 |
+
return None, "❌ Please enter text to synthesize."
|
| 186 |
+
|
| 187 |
+
if reference_audio is None:
|
| 188 |
+
return None, "❌ Please upload a reference audio file."
|
| 189 |
+
|
| 190 |
+
if not reference_transcript.strip():
|
| 191 |
+
return None, "❌ Please enter the reference transcript."
|
| 192 |
+
|
| 193 |
+
# Split text into chunks
|
| 194 |
+
progress(0.2, desc="Splitting text...")
|
| 195 |
+
text_chunks = smart_text_split_arabic(text, max_chunk_length)
|
| 196 |
+
|
| 197 |
+
audio_segments = []
|
| 198 |
+
sample_rate = None
|
| 199 |
+
|
| 200 |
+
# Generate audio for each chunk
|
| 201 |
+
for i, chunk in enumerate(text_chunks):
|
| 202 |
+
progress(0.2 + (0.6 * (i / len(text_chunks))), desc=f"Generating chunk {i+1}/{len(text_chunks)}...")
|
| 203 |
+
|
| 204 |
+
inputs = processor(
|
| 205 |
+
text=chunk.lower(),
|
| 206 |
+
prompt_speech_path=reference_audio,
|
| 207 |
+
prompt_text=reference_transcript,
|
| 208 |
+
return_tensors="pt"
|
| 209 |
+
).to(device)
|
| 210 |
+
|
| 211 |
+
global_tokens_prompt = inputs.pop("global_token_ids_prompt", None)
|
| 212 |
+
|
| 213 |
+
with torch.no_grad():
|
| 214 |
+
output_ids = model.generate(
|
| 215 |
+
**inputs,
|
| 216 |
+
max_new_tokens=8000,
|
| 217 |
+
do_sample=True,
|
| 218 |
+
temperature=temperature,
|
| 219 |
+
top_k=50,
|
| 220 |
+
top_p=top_p,
|
| 221 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 222 |
+
pad_token_id=processor.tokenizer.pad_token_id
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
output = processor.decode(
|
| 226 |
+
generated_ids=output_ids,
|
| 227 |
+
global_token_ids_prompt=global_tokens_prompt,
|
| 228 |
+
input_ids_len=inputs["input_ids"].shape[-1]
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
audio = output["audio"]
|
| 232 |
+
if isinstance(audio, torch.Tensor):
|
| 233 |
+
audio = audio.cpu().numpy()
|
| 234 |
+
|
| 235 |
+
if sample_rate is None:
|
| 236 |
+
sample_rate = output["sampling_rate"]
|
| 237 |
+
|
| 238 |
+
# Post-process
|
| 239 |
+
audio = normalize_audio(audio, target_rms=0.1)
|
| 240 |
+
audio = remove_silence(audio, sample_rate)
|
| 241 |
+
|
| 242 |
+
if len(audio) > 0:
|
| 243 |
+
audio_segments.append(audio)
|
| 244 |
+
|
| 245 |
+
if not audio_segments:
|
| 246 |
+
return None, "❌ No audio was generated."
|
| 247 |
+
|
| 248 |
+
# Concatenate segments
|
| 249 |
+
progress(0.9, desc="Concatenating audio...")
|
| 250 |
+
final_audio = audio_segments[0]
|
| 251 |
+
for i in range(1, len(audio_segments)):
|
| 252 |
+
final_audio = apply_crossfade(
|
| 253 |
+
final_audio, audio_segments[i],
|
| 254 |
+
fade_duration=crossfade_duration,
|
| 255 |
+
sample_rate=sample_rate
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
# Final normalization
|
| 259 |
+
final_audio = normalize_audio(final_audio, target_rms=0.1)
|
| 260 |
+
|
| 261 |
+
# Save to temporary file
|
| 262 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
| 263 |
+
sf.write(tmp_file.name, final_audio, sample_rate)
|
| 264 |
+
output_path = tmp_file.name
|
| 265 |
+
|
| 266 |
+
duration = len(final_audio) / sample_rate
|
| 267 |
+
status = f"✅ Generated {duration:.2f}s audio from {len(text_chunks)} chunks"
|
| 268 |
+
|
| 269 |
+
progress(1.0, desc="Complete!")
|
| 270 |
+
return output_path, status
|
| 271 |
+
|
| 272 |
+
except Exception as e:
|
| 273 |
+
import traceback
|
| 274 |
+
error_msg = f"❌ Error: {str(e)}\n{traceback.format_exc()}"
|
| 275 |
+
print(error_msg)
|
| 276 |
+
return None, error_msg
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
# Default examples
|
| 280 |
+
DEFAULT_REFERENCE_TEXT = "لَا يَمُرُّ يَوْمٌ إِلَّا وَأَسْتَقْبِلُ عِدَّةَ رَسَائِلَ، تَتَضَمَّنُ أَسْئِلَةً مُلِحَّةْ."
|
| 281 |
+
DEFAULT_TEXT = "تُسَاهِمُ التِّقْنِيَّاتُ الْحَدِيثَةُ فِي تَسْهِيلِ حَيَاةِ الْإِنْسَانِ، وَذَلِكَ مِنْ خِلَالِ تَطْوِيرِ أَنْظِمَةٍ ذَكِيَّةٍ تَعْتَمِدُ عَلَى الذَّكَاءِ الِاصْطِنَاعِيِّ."
|
| 282 |
+
|
| 283 |
+
# Path to default reference audio
|
| 284 |
+
DEFAULT_REFERENCE_AUDIO = "reference.wav"
|
| 285 |
+
|
| 286 |
+
# Create Gradio interface
|
| 287 |
+
with gr.Blocks(title="Arabic TTS - Spark", theme=gr.themes.Soft()) as demo:
|
| 288 |
+
gr.Markdown("""
|
| 289 |
+
# 🎙️ Arabic Text-to-Speech (Spark Model)
|
| 290 |
+
|
| 291 |
+
Generate high-quality Arabic speech from text using the Spark TTS model with voice cloning capabilities.
|
| 292 |
+
|
| 293 |
+
**Model:** [IbrahimSalah/Arabic-TTS-Spark](https://huggingface.co/IbrahimSalah/Arabic-TTS-Spark)
|
| 294 |
+
|
| 295 |
+
### ⚡ Quick Start:
|
| 296 |
+
1. Enter **diacritized Arabic text** to synthesize (تشكيل required)
|
| 297 |
+
2. Use the default reference audio or upload your own (5-30 seconds, clear speech)
|
| 298 |
+
3. Provide the **diacritized transcript** of your reference audio
|
| 299 |
+
4. Click "Generate Speech"
|
| 300 |
+
|
| 301 |
+
### ⚠️ Important Notes:
|
| 302 |
+
- **Diacritized text (تشكيل) is required** for both input text and reference transcript
|
| 303 |
+
- You can use any LLM (GPT, Claude, Gemini) to add diacritics to your text
|
| 304 |
+
- Example prompt for LLM: "أضف التشكيل الكامل للنص التالي: [your text]"
|
| 305 |
+
- Default reference audio is provided for quick testing
|
| 306 |
+
|
| 307 |
+
### 💡 Tips:
|
| 308 |
+
- Use high-quality reference audio with minimal background noise
|
| 309 |
+
- Reference audio should be 5-30 seconds long
|
| 310 |
+
- Longer texts are automatically split into chunks with smooth transitions
|
| 311 |
+
- First generation may take 30-60 seconds due to model loading
|
| 312 |
+
""")
|
| 313 |
+
|
| 314 |
+
with gr.Row():
|
| 315 |
+
with gr.Column():
|
| 316 |
+
text_input = gr.Textbox(
|
| 317 |
+
label="📝 Text to Synthesize (Diacritized Arabic / نص عربي مُشكّل)",
|
| 318 |
+
placeholder="Enter diacritized Arabic text here... مثال: تُسَاهِمُ التِّقْنِيَّاتُ الْحَدِيثَةُ فِي تَسْهِيلِ حَيَاةِ الْإِنْسَانِ",
|
| 319 |
+
lines=5,
|
| 320 |
+
value=DEFAULT_TEXT,
|
| 321 |
+
info="⚠️ Text must include diacritics (تشكيل). Use GPT/Claude to add them."
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
reference_audio = gr.Audio(
|
| 325 |
+
label="🎵 Reference Audio (Default Provided)",
|
| 326 |
+
type="filepath",
|
| 327 |
+
value=DEFAULT_REFERENCE_AUDIO,
|
| 328 |
+
help="Upload custom reference audio or use the default (WAV format, 5-30 seconds)"
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
reference_transcript = gr.Textbox(
|
| 332 |
+
label="📄 Reference Transcript (Diacritized / نص مُشكّل)",
|
| 333 |
+
placeholder="Enter the diacritized transcript of your reference audio...",
|
| 334 |
+
lines=2,
|
| 335 |
+
value=DEFAULT_REFERENCE_TEXT,
|
| 336 |
+
info="⚠️ Must match the reference audio exactly with full diacritics"
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
| 340 |
+
temperature = gr.Slider(0.1, 1.5, value=0.8, step=0.1, label="Temperature",
|
| 341 |
+
info="Higher = more variation (0.6-1.0 recommended)")
|
| 342 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top P",
|
| 343 |
+
info="Nucleus sampling threshold")
|
| 344 |
+
max_chunk = gr.Slider(100, 500, value=300, step=50, label="Max Chunk Length",
|
| 345 |
+
info="Characters per chunk for long texts")
|
| 346 |
+
crossfade = gr.Slider(0.01, 0.2, value=0.08, step=0.01, label="Crossfade Duration (s)",
|
| 347 |
+
info="Smooth transitions between chunks")
|
| 348 |
+
|
| 349 |
+
generate_btn = gr.Button("🎤 Generate Speech", variant="primary", size="lg")
|
| 350 |
+
|
| 351 |
+
with gr.Column():
|
| 352 |
+
output_audio = gr.Audio(label="🔊 Generated Speech", type="filepath")
|
| 353 |
+
status_text = gr.Textbox(label="Status", interactive=False, lines=3)
|
| 354 |
+
|
| 355 |
+
# Examples
|
| 356 |
+
gr.Markdown("### 📚 Examples (All with Full Diacritics)")
|
| 357 |
+
gr.Examples(
|
| 358 |
+
examples=[
|
| 359 |
+
[DEFAULT_TEXT, DEFAULT_REFERENCE_AUDIO, DEFAULT_REFERENCE_TEXT],
|
| 360 |
+
["السَّلَامُ عَلَيْكُمْ وَرَحْمَةُ اللَّهِ وَبَرَكَاتُهُ، كَيْفَ حَالُكَ الْيَوْمَ؟", DEFAULT_REFERENCE_AUDIO, DEFAULT_REFERENCE_TEXT],
|
| 361 |
+
["الذَّكَاءُ الِاصْطِنَاعِيُّ يُغَيِّرُ الْعَالَمَ بِسُرْعَةٍ كَبِيرَةٍ وَيُسَاهِمُ فِي تَطْوِيرِ حُلُولٍ مُبْتَكَرَةٍ لِلْمُشْكِلَاتِ الْمُعَقَّدَةِ.", DEFAULT_REFERENCE_AUDIO, DEFAULT_REFERENCE_TEXT]
|
| 362 |
+
],
|
| 363 |
+
inputs=[text_input, reference_audio, reference_transcript],
|
| 364 |
+
label="Click an example to try it out"
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
gr.Markdown("""
|
| 368 |
+
### 📖 About
|
| 369 |
+
This Space uses the **Arabic-TTS-Spark** model for high-quality Arabic text-to-speech synthesis with voice cloning.
|
| 370 |
+
|
| 371 |
+
### 🔧 How to Add Diacritics (التشكيل):
|
| 372 |
+
|
| 373 |
+
**Option 1: Use AI (Recommended)**
|
| 374 |
+
- Ask ChatGPT, Claude, or Gemini: "أضف التشكيل الكامل للنص التالي: [paste your text]"
|
| 375 |
+
- Or in English: "Add full Arabic diacritics to the following text: [paste your text]"
|
| 376 |
+
|
| 377 |
+
**Option 2: Online Tools**
|
| 378 |
+
- [Tashkeel Tool](https://tahadz.com/mishkal)
|
| 379 |
+
- [Harakat.ai](https://harakat.ai)
|
| 380 |
+
|
| 381 |
+
**Option 3: Microsoft Word**
|
| 382 |
+
- Type Arabic text → Select text → Review tab → Arabic Diacritics
|
| 383 |
+
|
| 384 |
+
### 📊 Model Info
|
| 385 |
+
- **Architecture**: Transformer-based TTS with voice cloning
|
| 386 |
+
- **Sample Rate**: 24kHz
|
| 387 |
+
- **Languages**: Modern Standard Arabic (MSA) and dialects
|
| 388 |
+
- **Max Input**: Unlimited (automatic chunking)
|
| 389 |
+
|
| 390 |
+
### 🔗 Links
|
| 391 |
+
- **Model Card**: [IbrahimSalah/Arabic-TTS-Spark](https://huggingface.co/IbrahimSalah/Arabic-TTS-Spark)
|
| 392 |
+
- **F5-TTS Arabic**: [IbrahimSalah/Arabic-F5-TTS-v2](https://huggingface.co/IbrahimSalah/Arabic-F5-TTS-v2)
|
| 393 |
+
- **Report Issues**: [Discussions](https://huggingface.co/IbrahimSalah/Arabic-TTS-Spark/discussions)
|
| 394 |
+
|
| 395 |
+
---
|
| 396 |
+
|
| 397 |
+
Made with ❤️ by **Ibrahim Salah** | [HuggingFace Profile](https://huggingface.co/IbrahimSalah)
|
| 398 |
+
""")
|
| 399 |
+
|
| 400 |
+
generate_btn.click(
|
| 401 |
+
fn=generate_speech,
|
| 402 |
+
inputs=[text_input, reference_audio, reference_transcript, temperature, top_p, max_chunk, crossfade],
|
| 403 |
+
outputs=[output_audio, status_text]
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
if __name__ == "__main__":
|
| 407 |
+
demo.queue(max_size=20) # Enable queue for better handling
|
| 408 |
+
demo.launch()
|