import gradio as gr import soundfile as sf import torch import numpy as np from pathlib import Path from transformers import AutoProcessor, AutoModel import tempfile import os import spaces import shutil # Import helper functions from your existing code from typing import List def smart_text_split_arabic(text: str, max_length: int = 300) -> List[str]: """Intelligently split Arabic text into chunks while preserving context.""" if len(text) <= max_length: return [text] chunks = [] remaining_text = text.strip() while remaining_text: if len(remaining_text) <= max_length: chunks.append(remaining_text) break chunk = remaining_text[:max_length] split_point = -1 # Priority 1: Sentence endings sentence_endings = ['.', '!', '?', '۔'] for i in range(len(chunk) - 1, max(0, max_length - 100), -1): if chunk[i] in sentence_endings: if i == len(chunk) - 1 or chunk[i + 1] == ' ': split_point = i + 1 break # Priority 2: Arabic clause separators if split_point == -1: arabic_separators = ['،', '؛', ':', ';', ','] for i in range(len(chunk) - 1, max(0, max_length - 50), -1): if chunk[i] in arabic_separators: if i == len(chunk) - 1 or chunk[i + 1] == ' ': split_point = i + 1 break # Priority 3: Word boundaries if split_point == -1: for i in range(len(chunk) - 1, max(0, max_length - 30), -1): if chunk[i] == ' ': split_point = i + 1 break if split_point == -1: split_point = max_length current_chunk = remaining_text[:split_point].strip() if current_chunk: chunks.append(current_chunk) remaining_text = remaining_text[split_point:].strip() return chunks def apply_crossfade(audio1: np.ndarray, audio2: np.ndarray, fade_duration: float = 0.1, sample_rate: int = 24000) -> np.ndarray: """Apply crossfade between two audio segments.""" fade_samples = int(fade_duration * sample_rate) fade_samples = min(fade_samples, len(audio1), len(audio2)) if fade_samples <= 0: return np.concatenate([audio1, audio2]) fade_out = np.linspace(1.0, 0.0, fade_samples) fade_in = np.linspace(0.0, 1.0, fade_samples) audio1_faded = audio1.copy() audio2_faded = audio2.copy() audio1_faded[-fade_samples:] *= fade_out audio2_faded[:fade_samples] *= fade_in overlap = audio1_faded[-fade_samples:] + audio2_faded[:fade_samples] result = np.concatenate([ audio1_faded[:-fade_samples], overlap, audio2_faded[fade_samples:] ]) return result def normalize_audio(audio: np.ndarray, target_rms: float = 0.1) -> np.ndarray: """Normalize audio to target RMS level.""" if len(audio) == 0: return audio current_rms = np.sqrt(np.mean(audio ** 2)) if current_rms > 1e-6: scaling_factor = target_rms / current_rms return audio * scaling_factor return audio def remove_silence(audio: np.ndarray, sample_rate: int = 24000, silence_threshold: float = 0.01, min_silence_duration: float = 0.5) -> np.ndarray: """Remove long silences from audio.""" if len(audio) == 0: return audio frame_size = int(0.05 * sample_rate) min_silence_frames = int(min_silence_duration / 0.05) frames = [] for i in range(0, len(audio), frame_size): frame = audio[i:i + frame_size] if len(frame) < frame_size: frames.append(frame) break rms = np.sqrt(np.mean(frame ** 2)) frames.append(frame if rms > silence_threshold else None) result_frames = [] silence_count = 0 for frame in frames: if frame is None: silence_count += 1 else: if silence_count > 0: if silence_count >= min_silence_frames: for _ in range(min(2, silence_count)): result_frames.append(np.zeros(frame_size, dtype=np.float32)) else: for _ in range(silence_count): result_frames.append(np.zeros(frame_size, dtype=np.float32)) result_frames.append(frame) silence_count = 0 if not result_frames: return np.array([], dtype=np.float32) return np.concatenate(result_frames) # Global model instance model_cache = {} def load_model(model_id: str = "IbrahimSalah/Arabic-TTS-Spark"): """Load the TTS model (cached).""" if "model" not in model_cache: device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Loading model on {device}...") processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) model = AutoModel.from_pretrained(model_id, trust_remote_code=True).eval().to(device) processor.model = model model_cache["model"] = model model_cache["processor"] = processor model_cache["device"] = device print("Model loaded successfully!") return model_cache["model"], model_cache["processor"], model_cache["device"] @spaces.GPU(duration=120) # Request GPU for 120 seconds def generate_speech( text: str, reference_audio, reference_transcript: str, temperature: float = 0.8, top_p: float = 0.95, max_chunk_length: int = 300, crossfade_duration: float = 0.08, progress=gr.Progress() ): """Generate speech from text using Spark TTS.""" try: # Load model progress(0.1, desc="Loading model...") model, processor, device = load_model() # Validate inputs if not text.strip(): return None, "❌ Please enter text to synthesize." if reference_audio is None: return None, "❌ Please upload a reference audio file." if not reference_transcript.strip(): return None, "❌ Please enter the reference transcript." # Split text into chunks progress(0.2, desc="Splitting text...") text_chunks = smart_text_split_arabic(text, max_chunk_length) audio_segments = [] sample_rate = None # Generate audio for each chunk for i, chunk in enumerate(text_chunks): progress(0.2 + (0.6 * (i / len(text_chunks))), desc=f"Generating chunk {i+1}/{len(text_chunks)}...") inputs = processor( text=chunk.lower(), prompt_speech_path=reference_audio, prompt_text=reference_transcript, return_tensors="pt" ).to(device) global_tokens_prompt = inputs.pop("global_token_ids_prompt", None) with torch.no_grad(): output_ids = model.generate( **inputs, max_new_tokens=8000, do_sample=True, temperature=temperature, top_k=50, top_p=top_p, eos_token_id=processor.tokenizer.eos_token_id, pad_token_id=processor.tokenizer.pad_token_id ) output = processor.decode( generated_ids=output_ids, global_token_ids_prompt=global_tokens_prompt, input_ids_len=inputs["input_ids"].shape[-1] ) audio = output["audio"] if isinstance(audio, torch.Tensor): audio = audio.cpu().numpy() if sample_rate is None: sample_rate = output["sampling_rate"] # Post-process audio = normalize_audio(audio, target_rms=0.1) audio = remove_silence(audio, sample_rate) if len(audio) > 0: audio_segments.append(audio) if not audio_segments: return None, "❌ No audio was generated." # Concatenate segments progress(0.9, desc="Concatenating audio...") final_audio = audio_segments[0] for i in range(1, len(audio_segments)): final_audio = apply_crossfade( final_audio, audio_segments[i], fade_duration=crossfade_duration, sample_rate=sample_rate ) # Final normalization final_audio = normalize_audio(final_audio, target_rms=0.1) # Save to temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: sf.write(tmp_file.name, final_audio, sample_rate) output_path = tmp_file.name duration = len(final_audio) / sample_rate status = f"✅ Generated {duration:.2f}s audio from {len(text_chunks)} chunks" progress(1.0, desc="Complete!") return output_path, status except Exception as e: import traceback error_msg = f"❌ Error: {str(e)}\n{traceback.format_exc()}" print(error_msg) return None, error_msg # Default examples DEFAULT_REFERENCE_TEXT = "لَا يَمُرُّ يَوْمٌ إِلَّا وَأَسْتَقْبِلُ عِدَّةَ رَسَائِلَ، تَتَضَمَّنُ أَسْئِلَةً مُلِحَّةْ." DEFAULT_TEXT = "تُسَاهِمُ التِّقْنِيَّاتُ الْحَدِيثَةُ فِي تَسْهِيلِ حَيَاةِ الْإِنْسَانِ، وَذَلِكَ مِنْ خِلَالِ تَطْوِيرِ أَنْظِمَةٍ ذَكِيَّةٍ تَعْتَمِدُ عَلَى الذَّكَاءِ الِاصْطِنَاعِيِّ." # Path to default reference audio DEFAULT_REFERENCE_AUDIO = "reference.wav" # Create Gradio interface with gr.Blocks(title="Arabic TTS - Spark", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🎙️ Arabic Text-to-Speech (Spark Model) Generate high-quality Arabic speech from text using the Spark TTS model with voice cloning capabilities. **Model:** [IbrahimSalah/Arabic-TTS-Spark](https://huggingface.co/IbrahimSalah/Arabic-TTS-Spark) ### ⚡ Quick Start: 1. Enter **diacritized Arabic text** to synthesize (تشكيل required) 2. Use the default reference audio or upload your own (5-30 seconds, clear speech) 3. Provide the **diacritized transcript** of your reference audio 4. Click "Generate Speech" ### ⚠️ Important Notes: - **Diacritized text (تشكيل) is required** for both input text and reference transcript - You can use any LLM (GPT, Claude, Gemini) to add diacritics to your text - Example prompt for LLM: "أضف التشكيل الكامل للنص التالي: [your text]" - Default reference audio is provided for quick testing ### 💡 Tips: - Use high-quality reference audio with minimal background noise - Reference audio should be 5-30 seconds long - Longer texts are automatically split into chunks with smooth transitions - First generation may take 30-60 seconds due to model loading """) with gr.Row(): with gr.Column(): text_input = gr.Textbox( label="📝 Text to Synthesize (Diacritized Arabic / نص عربي مُشكّل)", placeholder="Enter diacritized Arabic text here... مثال: تُسَاهِمُ التِّقْنِيَّاتُ الْحَدِيثَةُ فِي تَسْهِيلِ حَيَاةِ الْإِنْسَانِ", lines=5, value=DEFAULT_TEXT, info="⚠️ Text must include diacritics (تشكيل). Use GPT/Claude to add them." ) reference_audio = gr.Audio( label="🎵 Reference Audio (Default Provided)", type="filepath", value=DEFAULT_REFERENCE_AUDIO, help="Upload custom reference audio or use the default (WAV format, 5-30 seconds)" ) reference_transcript = gr.Textbox( label="📄 Reference Transcript (Diacritized / نص مُشكّل)", placeholder="Enter the diacritized transcript of your reference audio...", lines=2, value=DEFAULT_REFERENCE_TEXT, info="⚠️ Must match the reference audio exactly with full diacritics" ) with gr.Accordion("⚙️ Advanced Settings", open=False): temperature = gr.Slider(0.1, 1.5, value=0.8, step=0.1, label="Temperature", info="Higher = more variation (0.6-1.0 recommended)") top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top P", info="Nucleus sampling threshold") max_chunk = gr.Slider(100, 500, value=300, step=50, label="Max Chunk Length", info="Characters per chunk for long texts") crossfade = gr.Slider(0.01, 0.2, value=0.08, step=0.01, label="Crossfade Duration (s)", info="Smooth transitions between chunks") generate_btn = gr.Button("🎤 Generate Speech", variant="primary", size="lg") with gr.Column(): output_audio = gr.Audio(label="🔊 Generated Speech", type="filepath") status_text = gr.Textbox(label="Status", interactive=False, lines=3) # Examples gr.Markdown("### 📚 Examples (All with Full Diacritics)") gr.Examples( examples=[ [DEFAULT_TEXT, DEFAULT_REFERENCE_AUDIO, DEFAULT_REFERENCE_TEXT], ["السَّلَامُ عَلَيْكُمْ وَرَحْمَةُ اللَّهِ وَبَرَكَاتُهُ، كَيْفَ حَالُكَ الْيَوْمَ؟", DEFAULT_REFERENCE_AUDIO, DEFAULT_REFERENCE_TEXT], ["الذَّكَاءُ الِاصْطِنَاعِيُّ يُغَيِّرُ الْعَالَمَ بِسُرْعَةٍ كَبِيرَةٍ وَيُسَاهِمُ فِي تَطْوِيرِ حُلُولٍ مُبْتَكَرَةٍ لِلْمُشْكِلَاتِ الْمُعَقَّدَةِ.", DEFAULT_REFERENCE_AUDIO, DEFAULT_REFERENCE_TEXT] ], inputs=[text_input, reference_audio, reference_transcript], label="Click an example to try it out" ) gr.Markdown(""" ### 📖 About This Space uses the **Arabic-TTS-Spark** model for high-quality Arabic text-to-speech synthesis with voice cloning. ### 🔧 How to Add Diacritics (التشكيل): **Option 1: Use AI (Recommended)** - Ask ChatGPT, Claude, or Gemini: "أضف التشكيل الكامل للنص التالي: [paste your text]" - Or in English: "Add full Arabic diacritics to the following text: [paste your text]" **Option 2: Online Tools** - [Tashkeel Tool](https://tahadz.com/mishkal) - [Harakat.ai](https://harakat.ai) **Option 3: Microsoft Word** - Type Arabic text → Select text → Review tab → Arabic Diacritics ### 📊 Model Info - **Architecture**: Transformer-based TTS with voice cloning - **Sample Rate**: 24kHz - **Languages**: Modern Standard Arabic (MSA) and dialects - **Max Input**: Unlimited (automatic chunking) ### 🔗 Links - **Model Card**: [IbrahimSalah/Arabic-TTS-Spark](https://huggingface.co/IbrahimSalah/Arabic-TTS-Spark) - **F5-TTS Arabic**: [IbrahimSalah/Arabic-F5-TTS-v2](https://huggingface.co/IbrahimSalah/Arabic-F5-TTS-v2) - **Report Issues**: [Discussions](https://huggingface.co/IbrahimSalah/Arabic-TTS-Spark/discussions) --- Made with ❤️ by **Ibrahim Salah** | [HuggingFace Profile](https://huggingface.co/IbrahimSalah) """) generate_btn.click( fn=generate_speech, inputs=[text_input, reference_audio, reference_transcript, temperature, top_p, max_chunk, crossfade], outputs=[output_audio, status_text] ) if __name__ == "__main__": demo.queue(max_size=20) # Enable queue for better handling demo.launch()