Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from unsloth import FastLanguageModel
|
| 2 |
+
from trl import SFTTrainer
|
| 3 |
+
from transformers import TrainingArguments
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
|
| 6 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 7 |
+
"unsloth/gemma-2-2b-it",
|
| 8 |
+
max_seq_length = 2048,
|
| 9 |
+
load_in_4bit = True,
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
model = FastLanguageModel.get_peft_model(
|
| 13 |
+
model,
|
| 14 |
+
r = 64,
|
| 15 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
| 16 |
+
lora_alpha = 32,
|
| 17 |
+
lora_dropout = 0,
|
| 18 |
+
bias = "none",
|
| 19 |
+
use_gradient_checkpointing = "unsloth",
|
| 20 |
+
random_state = 3407,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
dataset = load_dataset("json", data_files="python_security_dataset.json", split="train")
|
| 24 |
+
|
| 25 |
+
trainer = SFTTrainer(
|
| 26 |
+
model = model,
|
| 27 |
+
tokenizer = tokenizer,
|
| 28 |
+
train_dataset = dataset,
|
| 29 |
+
dataset_text_field = "messages",
|
| 30 |
+
max_seq_length = 2048,
|
| 31 |
+
args = TrainingArguments(
|
| 32 |
+
per_device_train_batch_size = 2,
|
| 33 |
+
gradient_accumulation_steps = 4,
|
| 34 |
+
warmup_steps = 10,
|
| 35 |
+
max_steps = 300,
|
| 36 |
+
learning_rate = 2e-4,
|
| 37 |
+
fp16 = True,
|
| 38 |
+
logging_steps = 1,
|
| 39 |
+
output_dir = "k1ng_final",
|
| 40 |
+
optim = "adamw_8bit",
|
| 41 |
+
),
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
trainer.train()
|
| 45 |
+
|
| 46 |
+
model.save_pretrained("k1ng_by_alikay_h")
|
| 47 |
+
tokenizer.save_pretrained("k1ng_by_alikay_h")
|
| 48 |
+
|
| 49 |
+
# آپلود به HF
|
| 50 |
+
from huggingface_hub import notebook_login, HfApi
|
| 51 |
+
notebook_login()
|
| 52 |
+
api = HfApi()
|
| 53 |
+
api.upload_folder(folder_path="k1ng_by_alikay_h", repo_id="alikayh/k1ng-v1", repo_type="model")
|