import subprocess import sys from unsloth import FastLanguageModel from trl import SFTTrainer from transformers import TrainingArguments from datasets import load_dataset subprocess.check_call([sys.executable, "-m", "pip", "install", "-r", "requirements.txt"]) model, tokenizer = FastLanguageModel.from_pretrained( "unsloth/gemma-2-2b-it", max_seq_length = 2048, load_in_4bit = True, ) model = FastLanguageModel.get_peft_model( model, r = 64, target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], lora_alpha = 32, lora_dropout = 0, bias = "none", use_gradient_checkpointing = "unsloth", random_state = 3407, ) dataset = load_dataset("json", data_files="python_security_dataset.json", split="train") trainer = SFTTrainer( model = model, tokenizer = tokenizer, train_dataset = dataset, dataset_text_field = "messages", max_seq_length = 2048, args = TrainingArguments( per_device_train_batch_size = 2, gradient_accumulation_steps = 4, warmup_steps = 10, max_steps = 300, learning_rate = 2e-4, fp16 = True, logging_steps = 1, output_dir = "k1ng_final", optim = "adamw_8bit", ), ) trainer.train() model.save_pretrained("k1ng_by_alikay_h") tokenizer.save_pretrained("k1ng_by_alikay_h") # آپلود به HF from huggingface_hub import notebook_login, HfApi notebook_login() api = HfApi() api.upload_folder(folder_path="k1ng_by_alikay_h", repo_id="alikayh/k1ng-v1", repo_type="model")