alvarobartt's picture
alvarobartt HF Staff
Add `share=True` to prevent `RuntimeError` (?)
c0cc20a verified
import random
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "alvarobartt/ghibli-characters-flux-lora"
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=80)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return image, seed
examples = [
(
"Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet,"
" standing heroically on a lush alien planet, vibrant flowers blooming around, soft"
" sunlight illuminating the scene, a gentle breeze rustling the leaves"
),
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# FLUX.1 Studio Ghibli LoRA")
gr.Markdown(
"[alvarobartt/ghibli-characters-flux-lora](https://huggingface.co/alvarobartt/ghibli-characters-flux-lora)"
" is a LoRA fine-tune of [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)"
" with [alvarobartt/ghibli-characters](https://huggingface.co/datasets/alvarobartt/ghibli-characters)."
)
with gr.Accordion("How to generate nice prompts?", open=False):
gr.Markdown(
"What worked best for me to generate high-quality prompts of well-known characters,"
" was to prompt either [Claude 3 Haiku](https://claude.ai), [GPT4-o](https://chatgpt.com/),"
" or [Perplexity](https://www.perplexity.ai/) with:\n\nYou are an"
" expert prompt writer for diffusion text to image models, and you've been provided"
" the following prompt template:\n\n\"Ghibli style [character description] with"
" [distinctive features], [action or pose], [environment or background],"
" [lighting or atmosphere], [additional details].\"\n\nCould you create a prompt"
" to generate [CHARACTER NAME] as a Studio Ghibli character following that template?"
" [MORE DETAILS IF NEEDED]\n"
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
fn=lambda x: (Image.open("./example.jpg"), 42),
inputs=[prompt],
outputs=[result, seed],
run_on_click=True,
)
gr.Markdown(
"### Disclaimer\n\n"
"License is non-commercial for both FLUX.1-dev and the Studio Ghibli dataset;"
" but free to use for personal and non-commercial purposes."
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed],
)
demo.queue()
demo.launch(share=True)