Add i2i
Browse files
app.py
CHANGED
|
@@ -5,9 +5,9 @@ import logging
|
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
import spaces
|
| 8 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
| 9 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 10 |
-
|
| 11 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
| 12 |
import copy
|
| 13 |
import random
|
|
@@ -25,6 +25,15 @@ base_model = "black-forest-labs/FLUX.1-dev"
|
|
| 25 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 26 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
| 27 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
MAX_SEED = 2**32-1
|
| 30 |
|
|
@@ -88,7 +97,26 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
| 88 |
):
|
| 89 |
yield img
|
| 90 |
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
if selected_index is None:
|
| 93 |
raise gr.Error("You must select a LoRA before proceeding.")
|
| 94 |
selected_lora = loras[selected_index]
|
|
@@ -107,32 +135,44 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
| 107 |
|
| 108 |
with calculateDuration("Unloading LoRA"):
|
| 109 |
pipe.unload_lora_weights()
|
|
|
|
| 110 |
|
| 111 |
# Load LoRA weights
|
| 112 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
| 113 |
-
if
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
| 115 |
else:
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
| 118 |
# Set random seed for reproducibility
|
| 119 |
with calculateDuration("Randomizing seed"):
|
| 120 |
if randomize_seed:
|
| 121 |
seed = random.randint(0, MAX_SEED)
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
| 135 |
-
|
| 136 |
def get_huggingface_safetensors(link):
|
| 137 |
split_link = link.split("/")
|
| 138 |
if(len(split_link) == 2):
|
|
@@ -257,6 +297,9 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
| 257 |
|
| 258 |
with gr.Row():
|
| 259 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
| 260 |
with gr.Column():
|
| 261 |
with gr.Row():
|
| 262 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
|
@@ -288,7 +331,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
| 288 |
gr.on(
|
| 289 |
triggers=[generate_button.click, prompt.submit],
|
| 290 |
fn=run_lora,
|
| 291 |
-
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
| 292 |
outputs=[result, seed, progress_bar]
|
| 293 |
)
|
| 294 |
|
|
|
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
import spaces
|
| 8 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
| 9 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 10 |
+
from diffusers.utils import load_image
|
| 11 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
| 12 |
import copy
|
| 13 |
import random
|
|
|
|
| 25 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 26 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
| 27 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
| 28 |
+
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
|
| 29 |
+
vae=good_vae,
|
| 30 |
+
transformer=pipe.transformer,
|
| 31 |
+
text_encoder=pipe.text_encoder,
|
| 32 |
+
tokenizer=pipe.tokenizer,
|
| 33 |
+
text_encoder_2=pipe.text_encoder_2,
|
| 34 |
+
tokenizer_2=pipe.tokenizer_2,
|
| 35 |
+
torch_dtype=dtype
|
| 36 |
+
)
|
| 37 |
|
| 38 |
MAX_SEED = 2**32-1
|
| 39 |
|
|
|
|
| 97 |
):
|
| 98 |
yield img
|
| 99 |
|
| 100 |
+
@spaces.GPU(duration=70)
|
| 101 |
+
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
|
| 102 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 103 |
+
pipe_i2i.to("cuda")
|
| 104 |
+
image_input = load_image(image_input_path)
|
| 105 |
+
final_image = pipe_i2i(
|
| 106 |
+
prompt=prompt_mash,
|
| 107 |
+
image=image_input,
|
| 108 |
+
strength=image_strength,
|
| 109 |
+
num_inference_steps=steps,
|
| 110 |
+
guidance_scale=cfg_scale,
|
| 111 |
+
width=width,
|
| 112 |
+
height=height,
|
| 113 |
+
generator=generator,
|
| 114 |
+
joint_attention_kwargs={"scale": lora_scale},
|
| 115 |
+
output_type="pil",
|
| 116 |
+
).images[0]
|
| 117 |
+
return final_image
|
| 118 |
+
|
| 119 |
+
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 120 |
if selected_index is None:
|
| 121 |
raise gr.Error("You must select a LoRA before proceeding.")
|
| 122 |
selected_lora = loras[selected_index]
|
|
|
|
| 135 |
|
| 136 |
with calculateDuration("Unloading LoRA"):
|
| 137 |
pipe.unload_lora_weights()
|
| 138 |
+
pipe_i2i.unload_lora_weights()
|
| 139 |
|
| 140 |
# Load LoRA weights
|
| 141 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
| 142 |
+
if(image_input is not None):
|
| 143 |
+
if "weights" in selected_lora:
|
| 144 |
+
pipe_i2i.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
| 145 |
+
else:
|
| 146 |
+
pipe_i2i.load_lora_weights(lora_path)
|
| 147 |
else:
|
| 148 |
+
if "weights" in selected_lora:
|
| 149 |
+
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
| 150 |
+
else:
|
| 151 |
+
pipe.load_lora_weights(lora_path)
|
| 152 |
+
|
| 153 |
# Set random seed for reproducibility
|
| 154 |
with calculateDuration("Randomizing seed"):
|
| 155 |
if randomize_seed:
|
| 156 |
seed = random.randint(0, MAX_SEED)
|
| 157 |
+
|
| 158 |
+
if(image_input is not None):
|
| 159 |
+
|
| 160 |
+
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
|
| 161 |
+
yield final_image, seed, gr.update(visible=False)
|
| 162 |
+
else:
|
| 163 |
+
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
| 164 |
|
| 165 |
+
# Consume the generator to get the final image
|
| 166 |
+
final_image = None
|
| 167 |
+
step_counter = 0
|
| 168 |
+
for image in image_generator:
|
| 169 |
+
step_counter+=1
|
| 170 |
+
final_image = image
|
| 171 |
+
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 172 |
+
yield image, seed, gr.update(value=progress_bar, visible=True)
|
| 173 |
+
|
| 174 |
+
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
| 175 |
|
|
|
|
|
|
|
| 176 |
def get_huggingface_safetensors(link):
|
| 177 |
split_link = link.split("/")
|
| 178 |
if(len(split_link) == 2):
|
|
|
|
| 297 |
|
| 298 |
with gr.Row():
|
| 299 |
with gr.Accordion("Advanced Settings", open=False):
|
| 300 |
+
with gr.Row():
|
| 301 |
+
input_image = gr.Image(label="Input image", type="filepath")
|
| 302 |
+
image_strength = gr.Slider(label="Image Strength", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
| 303 |
with gr.Column():
|
| 304 |
with gr.Row():
|
| 305 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
|
|
|
| 331 |
gr.on(
|
| 332 |
triggers=[generate_button.click, prompt.submit],
|
| 333 |
fn=run_lora,
|
| 334 |
+
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
| 335 |
outputs=[result, seed, progress_bar]
|
| 336 |
)
|
| 337 |
|