Spaces:
Configuration error
Configuration error
Update Amphion/models/ns3_codec/facodec.py
Browse files
Amphion/models/ns3_codec/facodec.py
CHANGED
|
@@ -10,6 +10,7 @@ from einops import rearrange
|
|
| 10 |
from einops.layers.torch import Rearrange
|
| 11 |
from .transformer import TransformerEncoder
|
| 12 |
from .gradient_reversal import GradientReversal
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def init_weights(m):
|
|
@@ -761,3 +762,456 @@ class FACodecRedecoder(nn.Module):
|
|
| 761 |
x = x * gamma + beta
|
| 762 |
x = self.model(x)
|
| 763 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from einops.layers.torch import Rearrange
|
| 11 |
from .transformer import TransformerEncoder
|
| 12 |
from .gradient_reversal import GradientReversal
|
| 13 |
+
from .melspec import MelSpectrogram
|
| 14 |
|
| 15 |
|
| 16 |
def init_weights(m):
|
|
|
|
| 762 |
x = x * gamma + beta
|
| 763 |
x = self.model(x)
|
| 764 |
return x
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
class FACodecEncoderV2(nn.Module):
|
| 768 |
+
def __init__(
|
| 769 |
+
self,
|
| 770 |
+
ngf=32,
|
| 771 |
+
up_ratios=(2, 4, 5, 5),
|
| 772 |
+
out_channels=1024,
|
| 773 |
+
):
|
| 774 |
+
super().__init__()
|
| 775 |
+
self.hop_length = np.prod(up_ratios)
|
| 776 |
+
self.up_ratios = up_ratios
|
| 777 |
+
|
| 778 |
+
# Create first convolution
|
| 779 |
+
d_model = ngf
|
| 780 |
+
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
|
| 781 |
+
|
| 782 |
+
# Create EncoderBlocks that double channels as they downsample by `stride`
|
| 783 |
+
for stride in up_ratios:
|
| 784 |
+
d_model *= 2
|
| 785 |
+
self.block += [EncoderBlock(d_model, stride=stride)]
|
| 786 |
+
|
| 787 |
+
# Create last convolution
|
| 788 |
+
self.block += [
|
| 789 |
+
Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)),
|
| 790 |
+
WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
|
| 791 |
+
]
|
| 792 |
+
|
| 793 |
+
# Wrap black into nn.Sequential
|
| 794 |
+
self.block = nn.Sequential(*self.block)
|
| 795 |
+
self.enc_dim = d_model
|
| 796 |
+
|
| 797 |
+
self.mel_transform = MelSpectrogram(
|
| 798 |
+
n_fft=1024,
|
| 799 |
+
num_mels=80,
|
| 800 |
+
sampling_rate=16000,
|
| 801 |
+
hop_size=200,
|
| 802 |
+
win_size=800,
|
| 803 |
+
fmin=0,
|
| 804 |
+
fmax=8000,
|
| 805 |
+
)
|
| 806 |
+
|
| 807 |
+
self.reset_parameters()
|
| 808 |
+
|
| 809 |
+
def forward(self, x):
|
| 810 |
+
out = self.block(x)
|
| 811 |
+
return out
|
| 812 |
+
|
| 813 |
+
def inference(self, x):
|
| 814 |
+
return self.block(x)
|
| 815 |
+
|
| 816 |
+
def get_prosody_feature(self, x):
|
| 817 |
+
return self.mel_transform(x.squeeze(1))[:, :20, :]
|
| 818 |
+
|
| 819 |
+
def remove_weight_norm(self):
|
| 820 |
+
"""Remove weight normalization module from all of the layers."""
|
| 821 |
+
|
| 822 |
+
def _remove_weight_norm(m):
|
| 823 |
+
try:
|
| 824 |
+
torch.nn.utils.remove_weight_norm(m)
|
| 825 |
+
except ValueError: # this module didn't have weight norm
|
| 826 |
+
return
|
| 827 |
+
|
| 828 |
+
self.apply(_remove_weight_norm)
|
| 829 |
+
|
| 830 |
+
def apply_weight_norm(self):
|
| 831 |
+
"""Apply weight normalization module from all of the layers."""
|
| 832 |
+
|
| 833 |
+
def _apply_weight_norm(m):
|
| 834 |
+
if isinstance(m, nn.Conv1d):
|
| 835 |
+
torch.nn.utils.weight_norm(m)
|
| 836 |
+
|
| 837 |
+
self.apply(_apply_weight_norm)
|
| 838 |
+
|
| 839 |
+
def reset_parameters(self):
|
| 840 |
+
self.apply(init_weights)
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
class FACodecDecoderV2(nn.Module):
|
| 844 |
+
def __init__(
|
| 845 |
+
self,
|
| 846 |
+
in_channels=256,
|
| 847 |
+
upsample_initial_channel=1536,
|
| 848 |
+
ngf=32,
|
| 849 |
+
up_ratios=(5, 5, 4, 2),
|
| 850 |
+
vq_num_q_c=2,
|
| 851 |
+
vq_num_q_p=1,
|
| 852 |
+
vq_num_q_r=3,
|
| 853 |
+
vq_dim=1024,
|
| 854 |
+
vq_commit_weight=0.005,
|
| 855 |
+
vq_weight_init=False,
|
| 856 |
+
vq_full_commit_loss=False,
|
| 857 |
+
codebook_dim=8,
|
| 858 |
+
codebook_size_prosody=10, # true codebook size is equal to 2^codebook_size
|
| 859 |
+
codebook_size_content=10,
|
| 860 |
+
codebook_size_residual=10,
|
| 861 |
+
quantizer_dropout=0.0,
|
| 862 |
+
dropout_type="linear",
|
| 863 |
+
use_gr_content_f0=False,
|
| 864 |
+
use_gr_prosody_phone=False,
|
| 865 |
+
use_gr_residual_f0=False,
|
| 866 |
+
use_gr_residual_phone=False,
|
| 867 |
+
use_gr_x_timbre=False,
|
| 868 |
+
use_random_mask_residual=True,
|
| 869 |
+
prob_random_mask_residual=0.75,
|
| 870 |
+
):
|
| 871 |
+
super().__init__()
|
| 872 |
+
self.hop_length = np.prod(up_ratios)
|
| 873 |
+
self.ngf = ngf
|
| 874 |
+
self.up_ratios = up_ratios
|
| 875 |
+
|
| 876 |
+
self.use_random_mask_residual = use_random_mask_residual
|
| 877 |
+
self.prob_random_mask_residual = prob_random_mask_residual
|
| 878 |
+
|
| 879 |
+
self.vq_num_q_p = vq_num_q_p
|
| 880 |
+
self.vq_num_q_c = vq_num_q_c
|
| 881 |
+
self.vq_num_q_r = vq_num_q_r
|
| 882 |
+
|
| 883 |
+
self.codebook_size_prosody = codebook_size_prosody
|
| 884 |
+
self.codebook_size_content = codebook_size_content
|
| 885 |
+
self.codebook_size_residual = codebook_size_residual
|
| 886 |
+
|
| 887 |
+
quantizer_class = ResidualVQ
|
| 888 |
+
|
| 889 |
+
self.quantizer = nn.ModuleList()
|
| 890 |
+
|
| 891 |
+
# prosody
|
| 892 |
+
quantizer = quantizer_class(
|
| 893 |
+
num_quantizers=vq_num_q_p,
|
| 894 |
+
dim=vq_dim,
|
| 895 |
+
codebook_size=codebook_size_prosody,
|
| 896 |
+
codebook_dim=codebook_dim,
|
| 897 |
+
threshold_ema_dead_code=2,
|
| 898 |
+
commitment=vq_commit_weight,
|
| 899 |
+
weight_init=vq_weight_init,
|
| 900 |
+
full_commit_loss=vq_full_commit_loss,
|
| 901 |
+
quantizer_dropout=quantizer_dropout,
|
| 902 |
+
dropout_type=dropout_type,
|
| 903 |
+
)
|
| 904 |
+
self.quantizer.append(quantizer)
|
| 905 |
+
|
| 906 |
+
# phone
|
| 907 |
+
quantizer = quantizer_class(
|
| 908 |
+
num_quantizers=vq_num_q_c,
|
| 909 |
+
dim=vq_dim,
|
| 910 |
+
codebook_size=codebook_size_content,
|
| 911 |
+
codebook_dim=codebook_dim,
|
| 912 |
+
threshold_ema_dead_code=2,
|
| 913 |
+
commitment=vq_commit_weight,
|
| 914 |
+
weight_init=vq_weight_init,
|
| 915 |
+
full_commit_loss=vq_full_commit_loss,
|
| 916 |
+
quantizer_dropout=quantizer_dropout,
|
| 917 |
+
dropout_type=dropout_type,
|
| 918 |
+
)
|
| 919 |
+
self.quantizer.append(quantizer)
|
| 920 |
+
|
| 921 |
+
# residual
|
| 922 |
+
if self.vq_num_q_r > 0:
|
| 923 |
+
quantizer = quantizer_class(
|
| 924 |
+
num_quantizers=vq_num_q_r,
|
| 925 |
+
dim=vq_dim,
|
| 926 |
+
codebook_size=codebook_size_residual,
|
| 927 |
+
codebook_dim=codebook_dim,
|
| 928 |
+
threshold_ema_dead_code=2,
|
| 929 |
+
commitment=vq_commit_weight,
|
| 930 |
+
weight_init=vq_weight_init,
|
| 931 |
+
full_commit_loss=vq_full_commit_loss,
|
| 932 |
+
quantizer_dropout=quantizer_dropout,
|
| 933 |
+
dropout_type=dropout_type,
|
| 934 |
+
)
|
| 935 |
+
self.quantizer.append(quantizer)
|
| 936 |
+
|
| 937 |
+
# Add first conv layer
|
| 938 |
+
channels = upsample_initial_channel
|
| 939 |
+
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
|
| 940 |
+
|
| 941 |
+
# Add upsampling + MRF blocks
|
| 942 |
+
for i, stride in enumerate(up_ratios):
|
| 943 |
+
input_dim = channels // 2**i
|
| 944 |
+
output_dim = channels // 2 ** (i + 1)
|
| 945 |
+
layers += [DecoderBlock(input_dim, output_dim, stride)]
|
| 946 |
+
|
| 947 |
+
# Add final conv layer
|
| 948 |
+
layers += [
|
| 949 |
+
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
|
| 950 |
+
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
|
| 951 |
+
nn.Tanh(),
|
| 952 |
+
]
|
| 953 |
+
|
| 954 |
+
self.model = nn.Sequential(*layers)
|
| 955 |
+
|
| 956 |
+
self.timbre_encoder = TransformerEncoder(
|
| 957 |
+
enc_emb_tokens=None,
|
| 958 |
+
encoder_layer=4,
|
| 959 |
+
encoder_hidden=256,
|
| 960 |
+
encoder_head=4,
|
| 961 |
+
conv_filter_size=1024,
|
| 962 |
+
conv_kernel_size=5,
|
| 963 |
+
encoder_dropout=0.1,
|
| 964 |
+
use_cln=False,
|
| 965 |
+
)
|
| 966 |
+
|
| 967 |
+
self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
|
| 968 |
+
self.timbre_linear.bias.data[:in_channels] = 1
|
| 969 |
+
self.timbre_linear.bias.data[in_channels:] = 0
|
| 970 |
+
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
|
| 971 |
+
|
| 972 |
+
self.f0_predictor = CNNLSTM(in_channels, 1, 2)
|
| 973 |
+
self.phone_predictor = CNNLSTM(in_channels, 5003, 1)
|
| 974 |
+
|
| 975 |
+
self.use_gr_content_f0 = use_gr_content_f0
|
| 976 |
+
self.use_gr_prosody_phone = use_gr_prosody_phone
|
| 977 |
+
self.use_gr_residual_f0 = use_gr_residual_f0
|
| 978 |
+
self.use_gr_residual_phone = use_gr_residual_phone
|
| 979 |
+
self.use_gr_x_timbre = use_gr_x_timbre
|
| 980 |
+
|
| 981 |
+
if self.vq_num_q_r > 0 and self.use_gr_residual_f0:
|
| 982 |
+
self.res_f0_predictor = nn.Sequential(
|
| 983 |
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
|
| 984 |
+
)
|
| 985 |
+
|
| 986 |
+
if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0:
|
| 987 |
+
self.res_phone_predictor = nn.Sequential(
|
| 988 |
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
|
| 989 |
+
)
|
| 990 |
+
|
| 991 |
+
if self.use_gr_content_f0:
|
| 992 |
+
self.content_f0_predictor = nn.Sequential(
|
| 993 |
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
|
| 994 |
+
)
|
| 995 |
+
|
| 996 |
+
if self.use_gr_prosody_phone:
|
| 997 |
+
self.prosody_phone_predictor = nn.Sequential(
|
| 998 |
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
|
| 999 |
+
)
|
| 1000 |
+
|
| 1001 |
+
if self.use_gr_x_timbre:
|
| 1002 |
+
self.x_timbre_predictor = nn.Sequential(
|
| 1003 |
+
GradientReversal(alpha=1),
|
| 1004 |
+
CNNLSTM(in_channels, 245200, 1, global_pred=True),
|
| 1005 |
+
)
|
| 1006 |
+
|
| 1007 |
+
self.melspec_linear = nn.Linear(20, 256)
|
| 1008 |
+
self.melspec_encoder = TransformerEncoder(
|
| 1009 |
+
enc_emb_tokens=None,
|
| 1010 |
+
encoder_layer=4,
|
| 1011 |
+
encoder_hidden=256,
|
| 1012 |
+
encoder_head=4,
|
| 1013 |
+
conv_filter_size=1024,
|
| 1014 |
+
conv_kernel_size=5,
|
| 1015 |
+
encoder_dropout=0.1,
|
| 1016 |
+
use_cln=False,
|
| 1017 |
+
cfg=None,
|
| 1018 |
+
)
|
| 1019 |
+
|
| 1020 |
+
self.reset_parameters()
|
| 1021 |
+
|
| 1022 |
+
def quantize(self, x, prosody_feature, n_quantizers=None):
|
| 1023 |
+
outs, qs, commit_loss, quantized_buf = 0, [], [], []
|
| 1024 |
+
|
| 1025 |
+
# prosody
|
| 1026 |
+
f0_input = prosody_feature.transpose(1, 2) # (B, T, 20)
|
| 1027 |
+
f0_input = self.melspec_linear(f0_input)
|
| 1028 |
+
f0_input = self.melspec_encoder(f0_input, None, None)
|
| 1029 |
+
f0_input = f0_input.transpose(1, 2)
|
| 1030 |
+
f0_quantizer = self.quantizer[0]
|
| 1031 |
+
out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers)
|
| 1032 |
+
outs += out
|
| 1033 |
+
qs.append(q)
|
| 1034 |
+
quantized_buf.append(quantized.sum(0))
|
| 1035 |
+
commit_loss.append(commit)
|
| 1036 |
+
|
| 1037 |
+
# phone
|
| 1038 |
+
phone_input = x
|
| 1039 |
+
phone_quantizer = self.quantizer[1]
|
| 1040 |
+
out, q, commit, quantized = phone_quantizer(
|
| 1041 |
+
phone_input, n_quantizers=n_quantizers
|
| 1042 |
+
)
|
| 1043 |
+
outs += out
|
| 1044 |
+
qs.append(q)
|
| 1045 |
+
quantized_buf.append(quantized.sum(0))
|
| 1046 |
+
commit_loss.append(commit)
|
| 1047 |
+
|
| 1048 |
+
# residual
|
| 1049 |
+
if self.vq_num_q_r > 0:
|
| 1050 |
+
residual_quantizer = self.quantizer[2]
|
| 1051 |
+
residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach()
|
| 1052 |
+
out, q, commit, quantized = residual_quantizer(
|
| 1053 |
+
residual_input, n_quantizers=n_quantizers
|
| 1054 |
+
)
|
| 1055 |
+
outs += out
|
| 1056 |
+
qs.append(q)
|
| 1057 |
+
quantized_buf.append(quantized.sum(0)) # [L, B, C, T] -> [B, C, T]
|
| 1058 |
+
commit_loss.append(commit)
|
| 1059 |
+
|
| 1060 |
+
qs = torch.cat(qs, dim=0)
|
| 1061 |
+
commit_loss = torch.cat(commit_loss, dim=0)
|
| 1062 |
+
return outs, qs, commit_loss, quantized_buf
|
| 1063 |
+
|
| 1064 |
+
def forward(
|
| 1065 |
+
self,
|
| 1066 |
+
x,
|
| 1067 |
+
prosody_feature,
|
| 1068 |
+
vq=True,
|
| 1069 |
+
get_vq=False,
|
| 1070 |
+
eval_vq=True,
|
| 1071 |
+
speaker_embedding=None,
|
| 1072 |
+
n_quantizers=None,
|
| 1073 |
+
quantized=None,
|
| 1074 |
+
):
|
| 1075 |
+
if get_vq:
|
| 1076 |
+
return self.quantizer.get_emb()
|
| 1077 |
+
if vq is True:
|
| 1078 |
+
if eval_vq:
|
| 1079 |
+
self.quantizer.eval()
|
| 1080 |
+
x_timbre = x
|
| 1081 |
+
outs, qs, commit_loss, quantized_buf = self.quantize(
|
| 1082 |
+
x, prosody_feature, n_quantizers=n_quantizers
|
| 1083 |
+
)
|
| 1084 |
+
|
| 1085 |
+
x_timbre = x_timbre.transpose(1, 2)
|
| 1086 |
+
x_timbre = self.timbre_encoder(x_timbre, None, None)
|
| 1087 |
+
x_timbre = x_timbre.transpose(1, 2)
|
| 1088 |
+
spk_embs = torch.mean(x_timbre, dim=2)
|
| 1089 |
+
return outs, qs, commit_loss, quantized_buf, spk_embs
|
| 1090 |
+
|
| 1091 |
+
out = {}
|
| 1092 |
+
|
| 1093 |
+
layer_0 = quantized[0]
|
| 1094 |
+
f0, uv = self.f0_predictor(layer_0)
|
| 1095 |
+
f0 = rearrange(f0, "... 1 -> ...")
|
| 1096 |
+
uv = rearrange(uv, "... 1 -> ...")
|
| 1097 |
+
|
| 1098 |
+
layer_1 = quantized[1]
|
| 1099 |
+
(phone,) = self.phone_predictor(layer_1)
|
| 1100 |
+
|
| 1101 |
+
out = {"f0": f0, "uv": uv, "phone": phone}
|
| 1102 |
+
|
| 1103 |
+
if self.use_gr_prosody_phone:
|
| 1104 |
+
(prosody_phone,) = self.prosody_phone_predictor(layer_0)
|
| 1105 |
+
out["prosody_phone"] = prosody_phone
|
| 1106 |
+
|
| 1107 |
+
if self.use_gr_content_f0:
|
| 1108 |
+
content_f0, content_uv = self.content_f0_predictor(layer_1)
|
| 1109 |
+
content_f0 = rearrange(content_f0, "... 1 -> ...")
|
| 1110 |
+
content_uv = rearrange(content_uv, "... 1 -> ...")
|
| 1111 |
+
out["content_f0"] = content_f0
|
| 1112 |
+
out["content_uv"] = content_uv
|
| 1113 |
+
|
| 1114 |
+
if self.vq_num_q_r > 0:
|
| 1115 |
+
layer_2 = quantized[2]
|
| 1116 |
+
|
| 1117 |
+
if self.use_gr_residual_f0:
|
| 1118 |
+
res_f0, res_uv = self.res_f0_predictor(layer_2)
|
| 1119 |
+
res_f0 = rearrange(res_f0, "... 1 -> ...")
|
| 1120 |
+
res_uv = rearrange(res_uv, "... 1 -> ...")
|
| 1121 |
+
out["res_f0"] = res_f0
|
| 1122 |
+
out["res_uv"] = res_uv
|
| 1123 |
+
|
| 1124 |
+
if self.use_gr_residual_phone:
|
| 1125 |
+
(res_phone,) = self.res_phone_predictor(layer_2)
|
| 1126 |
+
out["res_phone"] = res_phone
|
| 1127 |
+
|
| 1128 |
+
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
| 1129 |
+
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
| 1130 |
+
if self.vq_num_q_r > 0:
|
| 1131 |
+
if self.use_random_mask_residual:
|
| 1132 |
+
bsz = quantized[2].shape[0]
|
| 1133 |
+
res_mask = np.random.choice(
|
| 1134 |
+
[0, 1],
|
| 1135 |
+
size=bsz,
|
| 1136 |
+
p=[
|
| 1137 |
+
self.prob_random_mask_residual,
|
| 1138 |
+
1 - self.prob_random_mask_residual,
|
| 1139 |
+
],
|
| 1140 |
+
)
|
| 1141 |
+
res_mask = (
|
| 1142 |
+
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
|
| 1143 |
+
) # (B, 1, 1)
|
| 1144 |
+
res_mask = res_mask.to(
|
| 1145 |
+
device=quantized[2].device, dtype=quantized[2].dtype
|
| 1146 |
+
)
|
| 1147 |
+
x = (
|
| 1148 |
+
quantized[0].detach()
|
| 1149 |
+
+ quantized[1].detach()
|
| 1150 |
+
+ quantized[2] * res_mask
|
| 1151 |
+
)
|
| 1152 |
+
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] * res_mask
|
| 1153 |
+
else:
|
| 1154 |
+
x = quantized[0].detach() + quantized[1].detach() + quantized[2]
|
| 1155 |
+
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2]
|
| 1156 |
+
else:
|
| 1157 |
+
x = quantized[0].detach() + quantized[1].detach()
|
| 1158 |
+
# x = quantized_perturbe[0].detach() + quantized[1].detach()
|
| 1159 |
+
|
| 1160 |
+
if self.use_gr_x_timbre:
|
| 1161 |
+
(x_timbre,) = self.x_timbre_predictor(x)
|
| 1162 |
+
out["x_timbre"] = x_timbre
|
| 1163 |
+
|
| 1164 |
+
x = x.transpose(1, 2)
|
| 1165 |
+
x = self.timbre_norm(x)
|
| 1166 |
+
x = x.transpose(1, 2)
|
| 1167 |
+
x = x * gamma + beta
|
| 1168 |
+
|
| 1169 |
+
x = self.model(x)
|
| 1170 |
+
out["audio"] = x
|
| 1171 |
+
|
| 1172 |
+
return out
|
| 1173 |
+
|
| 1174 |
+
def vq2emb(self, vq, use_residual=True):
|
| 1175 |
+
# vq: [num_quantizer, B, T]
|
| 1176 |
+
self.quantizer = self.quantizer.eval()
|
| 1177 |
+
out = 0
|
| 1178 |
+
out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p])
|
| 1179 |
+
out += self.quantizer[1].vq2emb(
|
| 1180 |
+
vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c]
|
| 1181 |
+
)
|
| 1182 |
+
if self.vq_num_q_r > 0 and use_residual:
|
| 1183 |
+
out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :])
|
| 1184 |
+
return out
|
| 1185 |
+
|
| 1186 |
+
def inference(self, x, speaker_embedding):
|
| 1187 |
+
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
| 1188 |
+
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
| 1189 |
+
x = x.transpose(1, 2)
|
| 1190 |
+
x = self.timbre_norm(x)
|
| 1191 |
+
x = x.transpose(1, 2)
|
| 1192 |
+
x = x * gamma + beta
|
| 1193 |
+
x = self.model(x)
|
| 1194 |
+
return x
|
| 1195 |
+
|
| 1196 |
+
def remove_weight_norm(self):
|
| 1197 |
+
"""Remove weight normalization module from all of the layers."""
|
| 1198 |
+
|
| 1199 |
+
def _remove_weight_norm(m):
|
| 1200 |
+
try:
|
| 1201 |
+
torch.nn.utils.remove_weight_norm(m)
|
| 1202 |
+
except ValueError: # this module didn't have weight norm
|
| 1203 |
+
return
|
| 1204 |
+
|
| 1205 |
+
self.apply(_remove_weight_norm)
|
| 1206 |
+
|
| 1207 |
+
def apply_weight_norm(self):
|
| 1208 |
+
"""Apply weight normalization module from all of the layers."""
|
| 1209 |
+
|
| 1210 |
+
def _apply_weight_norm(m):
|
| 1211 |
+
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
|
| 1212 |
+
torch.nn.utils.weight_norm(m)
|
| 1213 |
+
|
| 1214 |
+
self.apply(_apply_weight_norm)
|
| 1215 |
+
|
| 1216 |
+
def reset_parameters(self):
|
| 1217 |
+
self.apply(init_weights)
|