Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import DiffusionPipeline
|
| 4 |
+
from diffusers.utils import load_image, export_to_video
|
| 5 |
+
import tempfile
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# Load the model (we'll initialize it when first used to save resources)
|
| 9 |
+
pipe = None
|
| 10 |
+
|
| 11 |
+
def generate_video(image, prompt, seed=42):
|
| 12 |
+
global pipe
|
| 13 |
+
|
| 14 |
+
# Initialize the model if not already loaded
|
| 15 |
+
if pipe is None:
|
| 16 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 17 |
+
"Wan-AI/Wan2.1-VACE-14B",
|
| 18 |
+
torch_dtype=torch.float16
|
| 19 |
+
)
|
| 20 |
+
pipe.to("cuda")
|
| 21 |
+
|
| 22 |
+
# Set the seed for reproducibility
|
| 23 |
+
torch.manual_seed(seed)
|
| 24 |
+
|
| 25 |
+
# Generate the video frames
|
| 26 |
+
output = pipe(image=image, prompt=prompt).frames[0]
|
| 27 |
+
|
| 28 |
+
# Save to temporary file
|
| 29 |
+
temp_dir = tempfile.mkdtemp()
|
| 30 |
+
output_path = os.path.join(temp_dir, "output.mp4")
|
| 31 |
+
export_to_video(output, output_path)
|
| 32 |
+
|
| 33 |
+
return output_path
|
| 34 |
+
|
| 35 |
+
# Create Gradio interface
|
| 36 |
+
with gr.Blocks(title="Wan2.1 Video Generation") as demo:
|
| 37 |
+
gr.Markdown("# Wan2.1-VACE-14B Video Generation")
|
| 38 |
+
gr.Markdown("Generate videos from images and prompts using Wan2.1 model")
|
| 39 |
+
|
| 40 |
+
with gr.Row():
|
| 41 |
+
with gr.Column():
|
| 42 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
| 43 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Describe the video you want to generate...")
|
| 44 |
+
seed = gr.Number(label="Seed", value=42, precision=0)
|
| 45 |
+
generate_btn = gr.Button("Generate Video")
|
| 46 |
+
|
| 47 |
+
with gr.Column():
|
| 48 |
+
output_video = gr.Video(label="Generated Video")
|
| 49 |
+
|
| 50 |
+
# Example inputs
|
| 51 |
+
gr.Examples(
|
| 52 |
+
examples=[
|
| 53 |
+
[
|
| 54 |
+
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/guitar-man.png",
|
| 55 |
+
"A man with short gray hair plays a red electric guitar.",
|
| 56 |
+
42
|
| 57 |
+
],
|
| 58 |
+
[
|
| 59 |
+
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/41/Sunflower_from_Silesia2.jpg/1200px-Sunflower_from_Silesia2.jpg",
|
| 60 |
+
"A sunflower slowly blooming in the sunlight",
|
| 61 |
+
123
|
| 62 |
+
]
|
| 63 |
+
],
|
| 64 |
+
inputs=[input_image, prompt, seed],
|
| 65 |
+
outputs=output_video,
|
| 66 |
+
fn=generate_video,
|
| 67 |
+
cache_examples=True
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
generate_btn.click(
|
| 71 |
+
fn=generate_video,
|
| 72 |
+
inputs=[input_image, prompt, seed],
|
| 73 |
+
outputs=output_video
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
demo.launch()
|