Spaces:
Build error
Build error
File size: 12,524 Bytes
498af49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import streamlit as st
from engine import AdvancedPromptOptimizer
from llm_optimizer import optimize_with_llm, PERSONAS
from dotenv import load_dotenv
import os
load_dotenv()
cost_model = {
"GPT-4": (0.01, 0.03),
"Claude Opus": (0.015, 0.075),
"Claude Sonnet": (0.003, 0.015),
"LLaMA 2": (0.012, 0.04),
"Custom": (None, None),
}
def format_cost(tokens, cost_per_k):
return f"${tokens * cost_per_k / 1000:.4f}"
def main():
st.set_page_config(
layout="wide",
page_title="PromptCraft - AI Prompt Optimizer",
page_icon="π",
initial_sidebar_state="expanded"
)
# Custom CSS for enhanced styling
st.markdown("""
<style>
.main {
padding-top: 1rem;
}
.stApp {
background: #f8f9fa;
}
.main .block-container {
padding-top: 2rem;
padding-bottom: 2rem;
background: white;
border-radius: 20px;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
margin-top: 2rem;
}
.header-container {
background: linear-gradient(90deg, #4facfe 0%, #00f2fe 100%);
padding: 2rem;
border-radius: 15px;
margin-bottom: 2rem;
text-align: center;
box-shadow: 0 5px 20px rgba(79, 172, 254, 0.3);
}
.stSelectbox > div > div {
background-color: #f8f9ff;
border-radius: 10px;
}
.stTextArea textarea {
background-color: #f8f9ff;
border-radius: 10px;
border: 2px solid #e1e8ff;
}
.stButton > button {
background: linear-gradient(45deg, #667eea, #764ba2);
color: white;
border-radius: 25px;
border: none;
padding: 0.75rem 2rem;
font-weight: 600;
transition: all 0.3s ease;
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
}
.stButton > button:hover {
transform: translateY(-2px);
box-shadow: 0 7px 20px rgba(102, 126, 234, 0.6);
}
.metric-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 1.5rem;
border-radius: 15px;
color: white;
text-align: center;
box-shadow: 0 5px 20px rgba(102, 126, 234, 0.3);
margin-bottom: 1rem;
}
.feature-card {
background: #f8f9ff;
padding: 1.5rem;
border-radius: 15px;
border: 2px solid #e1e8ff;
margin-bottom: 1rem;
}
.cost-card {
background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%);
padding: 1.5rem;
border-radius: 15px;
color: white;
text-align: center;
box-shadow: 0 5px 20px rgba(17, 153, 142, 0.3);
margin-bottom: 1rem;
}
</style>
""", unsafe_allow_html=True)
# Header Section
st.markdown("""
<div class="header-container">
<h1 style="color: white; font-size: 3rem; margin-bottom: 0.5rem; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">π PromptCraft AI</h1>
<h3 style="color: white; margin-top: 0; opacity: 0.9; font-weight: 300;">β¨ Optimize Your AI Prompts, Save Money & Time β¨</h3>
<p style="color: white; opacity: 0.8; font-size: 1.1rem;">Transform verbose prompts into efficient, cost-effective versions without losing meaning</p>
</div>
""", unsafe_allow_html=True)
col1, col2 = st.columns([0.65, 0.35], gap="large")
with col1:
st.markdown("""
<div class="feature-card">
<h3 style="color: #667eea; margin-top: 0;">βοΈ Configuration</h3>
</div>
""", unsafe_allow_html=True)
st.markdown("**π° LLM Cost Settings**")
model = st.selectbox("Select LLM Model", list(cost_model.keys()))
if model == "Custom":
input_cost = st.number_input("Input Cost ($/1K tokens)", 0.01, 1.0, 0.03)
output_cost = st.number_input("Output Cost ($/1K tokens)", 0.01, 1.0, 0.06)
else:
input_cost, output_cost = cost_model[model]
st.markdown("**π€ Optimization Model**")
# Create columns for the optimizer section
opt_col1, opt_col2 = st.columns([1, 1])
with opt_col1:
optimizer_model = st.selectbox("Choose Optimizer", ["spaCy + Lemminflect", "GPT-5"])
persona = "Default"
api_key_input = ""
tavily_api_key_input = ""
if optimizer_model == "GPT-5":
with opt_col2:
persona = st.selectbox("Choose Persona", list(PERSONAS.keys()))
# API Keys in the same row
api_col1, api_col2 = st.columns([1, 1])
with api_col1:
api_key_input = st.text_input("AIMLAPI API Key (optional)", type="password", help="If you don't provide a key, the one in your .env file will be used.")
with api_col2:
tavily_api_key_input = st.text_input("Tavily API Key (optional)", type="password", help="If you don't provide a key, the one in your .env file will be used.")
elif optimizer_model == "spaCy + Lemminflect":
with opt_col2:
aggressiveness = st.slider(
"Optimization Level",
0.0,
1.0,
0.7,
help="Higher = more aggressive shortening",
)
else:
aggressiveness = 1.0
st.markdown("**π Your Prompt**")
prompt = st.text_area(
"Original Prompt",
height=200,
placeholder="β¨ Paste your AI prompt here and watch the magic happen...\n\nExample: 'Please analyze this data very carefully and provide a comprehensive detailed report with all the advantages and disadvantages'",
help="Enter the prompt you want to optimize. The optimizer will reduce token count while preserving meaning."
)
col_btn1, col_btn2, col_btn3 = st.columns([1, 2, 1])
with col_btn2:
optimize_clicked = st.button("π Optimize My Prompt", type="primary", use_container_width=True)
if optimize_clicked:
if optimizer_model == "spaCy + Lemminflect":
optimizer = AdvancedPromptOptimizer()
optimized, orig_toks, new_toks = optimizer.optimize(prompt, aggressiveness)
else: # GPT-5
api_key = api_key_input if api_key_input else os.getenv("AIMLAPI_API_KEY")
tavily_api_key = tavily_api_key_input if tavily_api_key_input else os.getenv("TAVILY_API_KEY")
if not api_key or api_key == "<YOUR_API_KEY>":
st.error("Please set your AIMLAPI_API_KEY in the .env file or enter it above.")
return
optimized = optimize_with_llm(prompt, api_key, persona, tavily_api_key=tavily_api_key)
# We need to calculate the tokens for the optimized prompt
# This is a simplification, as we don't have the exact tokenizer for gpt-5
# We will use tiktoken as an approximation
import tiktoken
tokenizer = tiktoken.get_encoding("cl100k_base")
orig_toks = len(tokenizer.encode(prompt))
new_toks = len(tokenizer.encode(optimized))
if orig_toks == 0:
st.warning("Please enter a valid prompt.")
return
# Calculate savings
token_savings = orig_toks - new_toks
percent_savings = (token_savings / orig_toks) * 100 if orig_toks > 0 else 0
input_cost_savings = token_savings * input_cost / 1000
output_cost_savings = token_savings * output_cost / 1000
total_cost_savings = input_cost_savings + output_cost_savings
with col1:
st.markdown("""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1rem; border-radius: 15px; margin-bottom: 1rem;">
<h3 style="color: white; text-align: center; margin: 0;">β¨ Optimized Prompt</h3>
</div>
""", unsafe_allow_html=True)
st.code(optimized, language="text")
# Enhanced download button
col_dl1, col_dl2, col_dl3 = st.columns([1, 2, 1])
with col_dl2:
st.download_button(
"π₯ Download Optimized Prompt",
optimized,
file_name="optimized_prompt.txt",
use_container_width=True
)
with col2:
st.markdown("""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1rem; border-radius: 15px; margin-bottom: 1rem;">
<h3 style="color: white; text-align: center; margin: 0;">π Optimization Results</h3>
</div>
""", unsafe_allow_html=True)
# Token Savings Card
st.markdown(
f"""
<div class="metric-card">
<h4 style="margin-top:0; opacity: 0.9;">π― Token Reduction</h4>
<div style="font-size:36px;font-weight:bold;margin:10px 0;">
{percent_savings:.1f}%
</div>
<div style="opacity: 0.8; font-size:16px;">
{token_savings} tokens saved
</div>
</div>
""",
unsafe_allow_html=True,
)
# Cost Savings Card
if orig_toks > 0 and (input_cost + output_cost) > 0:
cost_percent_savings = (
total_cost_savings
/ (orig_toks * (input_cost + output_cost) / 1000)
* 100
)
else:
cost_percent_savings = 0
st.markdown(
f"""
<div class="cost-card">
<h4 style="margin-top:0; opacity: 0.9;">πΈ Cost Reduction</h4>
<div style="font-size:36px;font-weight:bold;margin:10px 0;">
{cost_percent_savings:.1f}%
</div>
<div style="opacity: 0.8; font-size:16px;">
${total_cost_savings:.4f} saved per call
</div>
</div>
""",
unsafe_allow_html=True,
)
# Visual Progress Indicator
progress_value = min(1.0, max(0.0, percent_savings / 100))
st.markdown("**π Optimization Progress**")
st.progress(progress_value)
st.markdown(f"<p style='text-align: center; color: #667eea; font-weight: 500;'>Prompt reduced to {100-percent_savings:.1f}% of original size</p>", unsafe_allow_html=True)
# Detailed Breakdown
with st.expander("π Cost Analysis"):
col_a, col_b = st.columns(2)
with col_a:
st.markdown(
f"**Input Cost**\n\n"
f"Original: {format_cost(orig_toks, input_cost)}\n\n"
f"Optimized: {format_cost(new_toks, input_cost)}\n\n"
f"Saved: {format_cost(token_savings, input_cost)}"
)
with col_b:
st.markdown(
f"**Output Cost**\n\n"
f"Original: {format_cost(orig_toks, output_cost)}\n\n"
f"Optimized: {format_cost(new_toks, output_cost)}\n\n"
f"Saved: {format_cost(token_savings, output_cost)}"
)
# Optimization report
with st.expander("π Applied Optimizations"):
st.markdown("### Common Transformations")
st.json(
{
"Removed fillers": "e.g., 'very', 'carefully'",
"Shortened phrases": "'advantages/disadvantages' β 'pros/cons'",
"Structural changes": "Simplified JSON formatting",
"Verb optimization": "Converted to base forms",
"Preposition removal": "Dropped non-essential connectors",
}
)
st.markdown("### Share Your Savings")
st.code(
f"Saved {token_savings} tokens (${total_cost_savings:.4f}) with #PromptOptimizer\n"
f"Optimization level: {aggressiveness*100:.0f}%"
)
if __name__ == "__main__":
main() |