Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import torch | |
| import gradio as gr | |
| import pytube as pt | |
| from transformers import pipeline | |
| from huggingface_hub import model_info | |
| MODEL_NAME = "anuragshas/whisper-small-mr" #this always needs to stay in line 8 :D sorry for the hackiness | |
| lang = "mr" | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| chunk_length_s=30, | |
| device=device, | |
| ) | |
| pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") | |
| def transcribe(microphone, file_upload): | |
| warn_output = "" | |
| if (microphone is not None) and (file_upload is not None): | |
| warn_output = ( | |
| "WARNING: You've uploaded an audio file and used the microphone. " | |
| "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
| ) | |
| elif (microphone is None) and (file_upload is None): | |
| return "ERROR: You have to either use the microphone or upload an audio file" | |
| file = microphone if microphone is not None else file_upload | |
| text = pipe(file)["text"] | |
| return warn_output + text | |
| def _return_yt_html_embed(yt_url): | |
| video_id = yt_url.split("?v=")[-1] | |
| HTML_str = ( | |
| f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
| " </center>" | |
| ) | |
| return HTML_str | |
| def yt_transcribe(yt_url): | |
| yt = pt.YouTube(yt_url) | |
| html_embed_str = _return_yt_html_embed(yt_url) | |
| stream = yt.streams.filter(only_audio=True)[0] | |
| stream.download(filename="audio.mp3") | |
| text = pipe("audio.mp3")["text"] | |
| return html_embed_str, text | |
| demo = gr.Blocks() | |
| mf_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.Audio(sources="microphone", type="filepath"), | |
| gr.Audio(sources="upload", type="filepath"), | |
| ], | |
| outputs="text", | |
| title="Whisper Demo: Transcribe Audio", | |
| description=( | |
| "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned" | |
| f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" | |
| " of arbitrary length." | |
| ), | |
| flagging_mode="never", | |
| ) | |
| yt_transcribe = gr.Interface( | |
| fn=yt_transcribe, | |
| inputs=[gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")], | |
| outputs=["html", "text"], | |
| title="Whisper Demo: Transcribe YouTube", | |
| description=( | |
| "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:" | |
| f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of" | |
| " arbitrary length." | |
| ), | |
| flagging_mode="never", | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) | |
| demo.launch(mcp_server=True, show_api=False) | |
 
			
