File size: 4,162 Bytes
87456db 4d0e1b9 87456db 4d0e1b9 1747df2 87456db 4d0e1b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
---
title: Number Guessing Game Environment
emoji: 🎯
colorFrom: blue
colorTo: purple
sdk: docker
pinned: false
app_port: 8000
tags:
- openenv
- reinforcement-learning
- game
- binary-search
base_path: /web
---
# Number Guessing Game Environment
A simple OpenEnv environment where an agent learns to guess a secret number between 1 and 100 with limited attempts.
## Description
The agent receives hints after each guess ("higher", "lower", or "correct") and must find the secret number within 10 attempts. This environment is perfect for:
- Teaching RL agents binary search strategies
- Learning the OpenEnv framework
- Benchmarking simple reasoning capabilities
## Environment Details
**Action Space:**
- `GuessAction` with a single field:
- `guess`: Integer between 1 and 100
**Observation Space:**
- `GuessObservation` with fields:
- `hint`: String ("correct", "higher", "lower", or "invalid")
- `attempts_remaining`: Number of guesses left
- `guess_history`: List of all previous guesses
- `done`: Boolean indicating if episode is complete
- `reward`: Float reward for the action
**Reward Structure:**
- `+10.0`: Correct guess (episode ends)
- `+0.1`: Valid guess that narrows the range
- `-1.0`: Invalid guess (out of bounds)
- `-5.0`: Failed to guess within max attempts
**Episode Termination:**
- Agent guesses correctly
- Agent runs out of attempts (10 by default)
## Quick Start
### Using the Client
```python
from envs.number_guess_env import NumberGuessEnv, GuessAction
# Connect to a running server
client = NumberGuessEnv(base_url="http://localhost:8000")
# Or use Docker (automatically starts container)
# client = NumberGuessEnv.from_docker_image("number-guess-env:latest")
# Start a new game
result = client.reset()
print(result.observation.hint) # "Guess a number between 1 and 100!"
# Make guesses
result = client.step(GuessAction(guess=50))
print(f"Hint: {result.observation.hint}")
print(f"Reward: {result.reward}")
print(f"Attempts left: {result.observation.attempts_remaining}")
# Continue until done
while not result.done:
# Your agent logic here
guess = 75 # Example
result = client.step(GuessAction(guess=guess))
print(f"Hint: {result.observation.hint}")
client.close()
```
### Training an Agent
```python
from envs.number_guess_env import NumberGuessEnv, GuessAction
env = NumberGuessEnv.from_docker_image("number-guess-env:latest")
for episode in range(100):
result = env.reset()
total_reward = 0
# Simple binary search strategy
low, high = 1, 100
while not result.done:
guess = (low + high) // 2
result = env.step(GuessAction(guess=guess))
total_reward += result.reward
if result.observation.hint == "higher":
low = guess + 1
elif result.observation.hint == "lower":
high = guess - 1
print(f"Episode {episode}: Total reward = {total_reward}")
env.close()
```
## Building and Running
### Build Docker Image
```bash
docker build -t number-guess-env:latest server/
```
### Run Server Locally
```bash
# Using uvicorn directly
cd server
uvicorn app:app --host 0.0.0.0 --port 8000
# Or using Docker
docker run -p 8000:8000 number-guess-env:latest
```
### Test the Server
```bash
# Reset
curl -X POST http://localhost:8000/reset
# Step
curl -X POST http://localhost:8000/step \
-H "Content-Type: application/json" \
-d '{"guess": 50}'
# Get state
curl http://localhost:8000/state
```
## Environment Customization
You can customize the environment parameters:
```python
from envs.number_guess_env.server.number_guess_environment import NumberGuessEnvironment
# Custom range and attempts
env = NumberGuessEnvironment(
max_attempts=15,
min_number=1,
max_number=1000
)
```
## API Endpoints
When running as a server, the following endpoints are available:
- `POST /reset` - Start a new game with a new secret number
- `POST /step` - Submit a guess and receive a hint
- `GET /state` - Get current episode state (episode_id, step_count)
- `GET /health` - Health check endpoint
- `GET /` - API documentation
## License
BSD 3-Clause License (see LICENSE file)
|