""" 2025.3.17 2025.3.19 4.50.0 0.15.2 __UNSLOTH_VERSIONING__ """ torch_compile_options = {'epilogue_fusion': True, 'max_autotune': False, 'shape_padding': True, 'trace.enabled': False, 'triton.cudagraphs': False} from torch import Tensor import torch import torch.nn as nn from torch.nn import functional as F from peft.tuners.lora.aqlm import (torch) torch_addmm = torch.addmm torch_add = torch.add # @torch.compile(fullgraph = False, dynamic = True, options = torch_compile_options) def lora_forward(result, lora_A, lora_B, dropout, x, scaling): xA = dropout(x) @ lora_A.weight.t() # output = result + scaling * xA @ lora_B.weight.t() shape = result.shape output = torch_addmm( result.view(-1, shape[-1]), xA.view(-1, xA.shape[-1]), lora_B.weight.t(), alpha = scaling, beta = 1, ).view(shape) bias = lora_B.bias if bias is not None: output = torch_add( output, bias, alpha = scaling, ) return output pass def unsloth_forward(self, x: torch.Tensor): # note: logic differs from default Linear because merging is not supported result = self.base_layer(x) if self.disable_adapters: return result for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype x = self._cast_input_dtype(x, lora_A.weight.dtype) output = lora_B(lora_A(dropout(x))) if requires_conversion: output = output.to(expected_dtype) output = output * scaling result += output return result