Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,6 +19,7 @@ class TranscriptionService:
|
|
| 19 |
"""Klasa do zarz膮dzania modelami ASR na r贸偶nych urz膮dzeniach."""
|
| 20 |
|
| 21 |
def __init__(self):
|
|
|
|
| 22 |
self.models = {
|
| 23 |
'mps': None,
|
| 24 |
'cuda': None,
|
|
@@ -31,25 +32,15 @@ class TranscriptionService:
|
|
| 31 |
def _get_optimal_device(self, audio_length_minutes: float) -> str:
|
| 32 |
"""
|
| 33 |
Wybiera optymalne urz膮dzenie na podstawie d艂ugo艣ci audio i dost臋pno艣ci sprz臋tu.
|
| 34 |
-
|
| 35 |
-
Args:
|
| 36 |
-
audio_length_minutes: D艂ugo艣膰 audio w minutach
|
| 37 |
-
|
| 38 |
-
Returns:
|
| 39 |
-
str: Nazwa urz膮dzenia ('mps', 'cuda' lub 'cpu')
|
| 40 |
"""
|
| 41 |
-
# Sprawd藕 CUDA jako pierwszy wyb贸r dla wszystkich d艂ugo艣ci
|
| 42 |
if torch.cuda.is_available():
|
| 43 |
logger.info("U偶ywam CUDA (GPU) - najlepsza wydajno艣膰")
|
| 44 |
return "cuda"
|
| 45 |
|
| 46 |
-
|
| 47 |
-
# MPS tylko dla kr贸tszych plik贸w
|
| 48 |
if torch.backends.mps.is_available() and audio_length_minutes <= 8:
|
| 49 |
logger.info(f"Plik kr贸tki ({audio_length_minutes:.2f} min) - u偶ywam MPS")
|
| 50 |
return "mps"
|
| 51 |
|
| 52 |
-
# CPU jako fallback
|
| 53 |
if torch.backends.mps.is_available() and audio_length_minutes > 8:
|
| 54 |
logger.info(f"Plik d艂ugi ({audio_length_minutes:.2f} min) - u偶ywam CPU zamiast MPS")
|
| 55 |
else:
|
|
@@ -60,12 +51,6 @@ class TranscriptionService:
|
|
| 60 |
def _load_model(self, device: str) -> nemo_asr.models.ASRModel:
|
| 61 |
"""
|
| 62 |
艁aduje model na okre艣lonym urz膮dzeniu (z cache'owaniem).
|
| 63 |
-
|
| 64 |
-
Args:
|
| 65 |
-
device: Urz膮dzenie docelowe
|
| 66 |
-
|
| 67 |
-
Returns:
|
| 68 |
-
Za艂adowany model ASR
|
| 69 |
"""
|
| 70 |
if self.models[device] is None:
|
| 71 |
logger.info(f"艁adowanie modelu na {device.upper()}...")
|
|
@@ -84,13 +69,6 @@ class TranscriptionService:
|
|
| 84 |
def _split_audio(self, audio_file_path: str, chunk_length_ms: int) -> list:
|
| 85 |
"""
|
| 86 |
Dzieli d艂ugi plik audio na mniejsze fragmenty.
|
| 87 |
-
|
| 88 |
-
Args:
|
| 89 |
-
audio_file_path: 艢cie偶ka do pliku audio
|
| 90 |
-
chunk_length_ms: D艂ugo艣膰 fragmentu w milisekundach
|
| 91 |
-
|
| 92 |
-
Returns:
|
| 93 |
-
list: Lista 艣cie偶ek do plik贸w tymczasowych
|
| 94 |
"""
|
| 95 |
audio = AudioSegment.from_file(audio_file_path)
|
| 96 |
chunks = []
|
|
@@ -105,19 +83,14 @@ class TranscriptionService:
|
|
| 105 |
def _transcribe_with_timeout(self, audio_file_path: str, device: str) -> str:
|
| 106 |
"""
|
| 107 |
Wykonuje transkrypcj臋 z timeoutem.
|
| 108 |
-
|
| 109 |
-
Args:
|
| 110 |
-
audio_file_path: 艢cie偶ka do pliku audio
|
| 111 |
-
device: Urz膮dzenie do transkrypcji
|
| 112 |
-
|
| 113 |
-
Returns:
|
| 114 |
-
str: Transkrypcja
|
| 115 |
"""
|
|
|
|
|
|
|
|
|
|
| 116 |
result = {"text": None, "error": None}
|
| 117 |
|
| 118 |
def transcribe_worker():
|
| 119 |
try:
|
| 120 |
-
model = self._load_model(device)
|
| 121 |
transcriptions = model.transcribe([audio_file_path])
|
| 122 |
if transcriptions and len(transcriptions) > 0:
|
| 123 |
result["text"] = transcriptions[0].text
|
|
@@ -141,31 +114,20 @@ class TranscriptionService:
|
|
| 141 |
def transcribe(self, audio_file_path: str, progress=None) -> str:
|
| 142 |
"""
|
| 143 |
G艂贸wna funkcja transkrypcji.
|
| 144 |
-
|
| 145 |
-
Args:
|
| 146 |
-
audio_file_path: 艢cie偶ka do pliku audio
|
| 147 |
-
progress: Obiekt progress Gradio (opcjonalnie)
|
| 148 |
-
|
| 149 |
-
Returns:
|
| 150 |
-
str: Transkrypcja lub komunikat b艂臋du
|
| 151 |
"""
|
| 152 |
-
# Walidacja pliku
|
| 153 |
if not audio_file_path or not os.path.exists(audio_file_path):
|
| 154 |
return "B艂膮d: Nie wybrano pliku audio lub plik nie istnieje."
|
| 155 |
|
| 156 |
temp_files = []
|
| 157 |
|
| 158 |
try:
|
| 159 |
-
# Analiza d艂ugo艣ci pliku
|
| 160 |
logger.info(f"Analizuj臋 plik: {os.path.basename(audio_file_path)}")
|
| 161 |
audio = AudioSegment.from_file(audio_file_path)
|
| 162 |
length_minutes = len(audio) / (1000 * 60)
|
| 163 |
logger.info(f"D艂ugo艣膰 pliku: {length_minutes:.2f} minut")
|
| 164 |
|
| 165 |
-
# Wyb贸r optymalnego urz膮dzenia
|
| 166 |
device = self._get_optimal_device(length_minutes)
|
| 167 |
|
| 168 |
-
# Dziel d艂ugie pliki na fragmenty
|
| 169 |
if length_minutes > self.chunk_length_minutes:
|
| 170 |
if progress:
|
| 171 |
progress(0.1, desc="Dziel臋 plik na fragmenty...")
|
|
@@ -190,7 +152,6 @@ class TranscriptionService:
|
|
| 190 |
|
| 191 |
result_text = " ".join(all_transcriptions)
|
| 192 |
else:
|
| 193 |
-
# Kr贸tkie pliki - transkrypcja ca艂o艣ci
|
| 194 |
if progress:
|
| 195 |
progress(0.5, desc="Rozpoczynam transkrypcj臋...")
|
| 196 |
|
|
@@ -213,7 +174,6 @@ class TranscriptionService:
|
|
| 213 |
logger.error(error_msg)
|
| 214 |
return error_msg
|
| 215 |
finally:
|
| 216 |
-
# Sprz膮tanie plik贸w tymczasowych
|
| 217 |
for temp_file in temp_files:
|
| 218 |
try:
|
| 219 |
os.remove(temp_file)
|
|
@@ -248,12 +208,13 @@ def create_interface() -> gr.Interface:
|
|
| 248 |
**Obs艂ugiwane formaty:** WAV, MP3, FLAC, M4A i inne
|
| 249 |
**Optymalizacja urz膮dzenia:** Automatyczny wyb贸r GPU/CPU
|
| 250 |
""",
|
|
|
|
|
|
|
| 251 |
flagging_options=None,
|
| 252 |
allow_flagging="never"
|
| 253 |
)
|
| 254 |
|
| 255 |
if __name__ == "__main__":
|
| 256 |
-
# Informacje o dost臋pnych urz膮dzeniach
|
| 257 |
logger.info("=== Informacje o systemie ===")
|
| 258 |
logger.info(f"CUDA dost臋pne: {torch.cuda.is_available()}")
|
| 259 |
logger.info(f"MPS dost臋pne: {torch.backends.mps.is_available()}")
|
|
@@ -261,12 +222,11 @@ if __name__ == "__main__":
|
|
| 261 |
if torch.cuda.is_available():
|
| 262 |
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 263 |
|
| 264 |
-
# Uruchomienie interfejsu
|
| 265 |
interface = create_interface()
|
| 266 |
interface.launch(
|
| 267 |
-
server_name="
|
| 268 |
server_port=7860,
|
| 269 |
-
share=False,
|
| 270 |
-
debug=False,
|
| 271 |
show_error=True
|
| 272 |
)
|
|
|
|
| 19 |
"""Klasa do zarz膮dzania modelami ASR na r贸偶nych urz膮dzeniach."""
|
| 20 |
|
| 21 |
def __init__(self):
|
| 22 |
+
# Usuni臋cie wst臋pnego 艂adowania. Modele b臋d膮 艂adowane dynamicznie
|
| 23 |
self.models = {
|
| 24 |
'mps': None,
|
| 25 |
'cuda': None,
|
|
|
|
| 32 |
def _get_optimal_device(self, audio_length_minutes: float) -> str:
|
| 33 |
"""
|
| 34 |
Wybiera optymalne urz膮dzenie na podstawie d艂ugo艣ci audio i dost臋pno艣ci sprz臋tu.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
"""
|
|
|
|
| 36 |
if torch.cuda.is_available():
|
| 37 |
logger.info("U偶ywam CUDA (GPU) - najlepsza wydajno艣膰")
|
| 38 |
return "cuda"
|
| 39 |
|
|
|
|
|
|
|
| 40 |
if torch.backends.mps.is_available() and audio_length_minutes <= 8:
|
| 41 |
logger.info(f"Plik kr贸tki ({audio_length_minutes:.2f} min) - u偶ywam MPS")
|
| 42 |
return "mps"
|
| 43 |
|
|
|
|
| 44 |
if torch.backends.mps.is_available() and audio_length_minutes > 8:
|
| 45 |
logger.info(f"Plik d艂ugi ({audio_length_minutes:.2f} min) - u偶ywam CPU zamiast MPS")
|
| 46 |
else:
|
|
|
|
| 51 |
def _load_model(self, device: str) -> nemo_asr.models.ASRModel:
|
| 52 |
"""
|
| 53 |
艁aduje model na okre艣lonym urz膮dzeniu (z cache'owaniem).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
"""
|
| 55 |
if self.models[device] is None:
|
| 56 |
logger.info(f"艁adowanie modelu na {device.upper()}...")
|
|
|
|
| 69 |
def _split_audio(self, audio_file_path: str, chunk_length_ms: int) -> list:
|
| 70 |
"""
|
| 71 |
Dzieli d艂ugi plik audio na mniejsze fragmenty.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
"""
|
| 73 |
audio = AudioSegment.from_file(audio_file_path)
|
| 74 |
chunks = []
|
|
|
|
| 83 |
def _transcribe_with_timeout(self, audio_file_path: str, device: str) -> str:
|
| 84 |
"""
|
| 85 |
Wykonuje transkrypcj臋 z timeoutem.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
"""
|
| 87 |
+
# 艁adowanie modelu przeniesione tutaj
|
| 88 |
+
model = self._load_model(device)
|
| 89 |
+
|
| 90 |
result = {"text": None, "error": None}
|
| 91 |
|
| 92 |
def transcribe_worker():
|
| 93 |
try:
|
|
|
|
| 94 |
transcriptions = model.transcribe([audio_file_path])
|
| 95 |
if transcriptions and len(transcriptions) > 0:
|
| 96 |
result["text"] = transcriptions[0].text
|
|
|
|
| 114 |
def transcribe(self, audio_file_path: str, progress=None) -> str:
|
| 115 |
"""
|
| 116 |
G艂贸wna funkcja transkrypcji.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
"""
|
|
|
|
| 118 |
if not audio_file_path or not os.path.exists(audio_file_path):
|
| 119 |
return "B艂膮d: Nie wybrano pliku audio lub plik nie istnieje."
|
| 120 |
|
| 121 |
temp_files = []
|
| 122 |
|
| 123 |
try:
|
|
|
|
| 124 |
logger.info(f"Analizuj臋 plik: {os.path.basename(audio_file_path)}")
|
| 125 |
audio = AudioSegment.from_file(audio_file_path)
|
| 126 |
length_minutes = len(audio) / (1000 * 60)
|
| 127 |
logger.info(f"D艂ugo艣膰 pliku: {length_minutes:.2f} minut")
|
| 128 |
|
|
|
|
| 129 |
device = self._get_optimal_device(length_minutes)
|
| 130 |
|
|
|
|
| 131 |
if length_minutes > self.chunk_length_minutes:
|
| 132 |
if progress:
|
| 133 |
progress(0.1, desc="Dziel臋 plik na fragmenty...")
|
|
|
|
| 152 |
|
| 153 |
result_text = " ".join(all_transcriptions)
|
| 154 |
else:
|
|
|
|
| 155 |
if progress:
|
| 156 |
progress(0.5, desc="Rozpoczynam transkrypcj臋...")
|
| 157 |
|
|
|
|
| 174 |
logger.error(error_msg)
|
| 175 |
return error_msg
|
| 176 |
finally:
|
|
|
|
| 177 |
for temp_file in temp_files:
|
| 178 |
try:
|
| 179 |
os.remove(temp_file)
|
|
|
|
| 208 |
**Obs艂ugiwane formaty:** WAV, MP3, FLAC, M4A i inne
|
| 209 |
**Optymalizacja urz膮dzenia:** Automatyczny wyb贸r GPU/CPU
|
| 210 |
""",
|
| 211 |
+
examples=None,
|
| 212 |
+
cache_examples=False,
|
| 213 |
flagging_options=None,
|
| 214 |
allow_flagging="never"
|
| 215 |
)
|
| 216 |
|
| 217 |
if __name__ == "__main__":
|
|
|
|
| 218 |
logger.info("=== Informacje o systemie ===")
|
| 219 |
logger.info(f"CUDA dost臋pne: {torch.cuda.is_available()}")
|
| 220 |
logger.info(f"MPS dost臋pne: {torch.backends.mps.is_available()}")
|
|
|
|
| 222 |
if torch.cuda.is_available():
|
| 223 |
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 224 |
|
|
|
|
| 225 |
interface = create_interface()
|
| 226 |
interface.launch(
|
| 227 |
+
server_name="0.0.0.0", # Zmieniono z 127.0.0.1
|
| 228 |
server_port=7860,
|
| 229 |
+
share=False,
|
| 230 |
+
debug=False,
|
| 231 |
show_error=True
|
| 232 |
)
|