Spaces:
Running
Running
Commit
·
ce026c5
1
Parent(s):
5be9630
updated gpt2 to transformer 4.10
Browse filesI hope it works ( i didnt test the parralelize method)
- backend/modeling_gpt2.py +502 -99
backend/modeling_gpt2.py
CHANGED
|
@@ -23,42 +23,35 @@ and https://github.com/ghosthamlet/gpt2-ml-torch/blob/master/gpt2_ml_torch/model
|
|
| 23 |
|
| 24 |
import logging
|
| 25 |
import os
|
| 26 |
-
|
| 27 |
from dataclasses import dataclass
|
| 28 |
from typing import List, Optional, Tuple
|
| 29 |
|
| 30 |
import torch
|
| 31 |
import torch.nn as nn
|
| 32 |
from torch.nn import CrossEntropyLoss, MSELoss
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
from transformers.activations import ACT2FN
|
| 37 |
-
from transformers import
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
prune_conv1d_layer,
|
| 44 |
-
find_pruneable_heads_and_indices
|
| 45 |
)
|
| 46 |
-
|
| 47 |
-
from transformers import CONFIG_NAME, WEIGHTS_NAME, GPT2Config, GPT2Model
|
| 48 |
-
|
| 49 |
from transformers.modeling_outputs import (
|
| 50 |
BaseModelOutputWithPastAndCrossAttentions,
|
| 51 |
CausalLMOutputWithCrossAttentions,
|
| 52 |
-
SequenceClassifierOutputWithPast
|
|
|
|
| 53 |
)
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
replace_return_docstrings
|
| 61 |
)
|
|
|
|
| 62 |
|
| 63 |
# THe Difference from Transformers is code under _USE_GROVER
|
| 64 |
_USE_GROVER = True
|
|
@@ -83,30 +76,30 @@ console.setLevel(logging.INFO)
|
|
| 83 |
logger.addHandler(console)
|
| 84 |
|
| 85 |
_GPT2_ML_TF_TO_TORCH = {
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
'beta': 'bias',
|
| 105 |
-
'bias': 'bias',
|
| 106 |
}
|
| 107 |
|
| 108 |
|
| 109 |
-
def convert_gpt2_checkpoint_to_pytorch(
|
|
|
|
|
|
|
| 110 |
# Construct model
|
| 111 |
if gpt2_config_file == "":
|
| 112 |
config = GPT2Config()
|
|
@@ -130,10 +123,10 @@ def convert_gpt2_checkpoint_to_pytorch(gpt2_checkpoint_path, gpt2_config_file, p
|
|
| 130 |
# XXX: MUST do like: convert_gpt2_checkpoint_to_pytorch('./model.ckpt-100000', './mega.json', './')
|
| 131 |
# https://github.com/tensorflow/models/issues/2675#issuecomment-516595597
|
| 132 |
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
| 133 |
-
"""
|
| 134 |
-
"""
|
| 135 |
try:
|
| 136 |
import re
|
|
|
|
| 137 |
import tensorflow as tf
|
| 138 |
except ImportError:
|
| 139 |
logger.error(
|
|
@@ -154,6 +147,7 @@ def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
|
| 154 |
arrays.append(array.squeeze())
|
| 155 |
|
| 156 |
import copy
|
|
|
|
| 157 |
orig_model = copy.deepcopy(model)
|
| 158 |
|
| 159 |
for name, array in zip(names, arrays):
|
|
@@ -161,7 +155,7 @@ def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
|
| 161 |
name = name.split("/")
|
| 162 |
pointer = model
|
| 163 |
|
| 164 |
-
attn_layer =
|
| 165 |
for m_name in name:
|
| 166 |
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
| 167 |
scope_names = re.split(r"(\d+)", m_name)
|
|
@@ -169,23 +163,23 @@ def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
|
| 169 |
scope_names = [m_name]
|
| 170 |
sname = scope_names[0]
|
| 171 |
|
| 172 |
-
if sname ==
|
| 173 |
continue
|
| 174 |
elif sname not in _GPT2_ML_TF_TO_TORCH:
|
| 175 |
-
print(
|
| 176 |
-
logger.info(
|
| 177 |
pointer = None
|
| 178 |
break
|
| 179 |
else:
|
| 180 |
tname = _GPT2_ML_TF_TO_TORCH[sname]
|
| 181 |
-
if
|
| 182 |
-
parent, child = tname.split(
|
| 183 |
pointer = getattr(pointer, parent)
|
| 184 |
pointer = getattr(pointer, child)
|
| 185 |
else:
|
| 186 |
pointer = getattr(pointer, tname)
|
| 187 |
|
| 188 |
-
if tname ==
|
| 189 |
attn_layer = sname
|
| 190 |
|
| 191 |
if len(scope_names) >= 2:
|
|
@@ -194,39 +188,47 @@ def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
|
| 194 |
|
| 195 |
if pointer is None:
|
| 196 |
continue
|
| 197 |
-
if attn_layer ==
|
| 198 |
try:
|
| 199 |
assert pointer.shape == array.shape
|
| 200 |
except AssertionError as e:
|
| 201 |
e.args += (pointer.shape, array.shape)
|
| 202 |
raise
|
| 203 |
-
logger.info(
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
pointer.data = torch.from_numpy(array)
|
| 206 |
else:
|
| 207 |
shape = pointer.shape
|
| 208 |
d = torch.from_numpy(array)
|
| 209 |
is_bias = len(shape) == 1
|
| 210 |
-
end = int(shape[0 if is_bias else 1]/3)
|
| 211 |
m = dict(
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
start = m[attn_layer]
|
| 217 |
end = start + end
|
| 218 |
if is_bias:
|
| 219 |
pointer.data[start:end] = d
|
| 220 |
else:
|
| 221 |
pointer.data[:, start:end] = d
|
| 222 |
-
logger.info(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
for name, params in orig_model.named_parameters():
|
| 225 |
for n, p in model.named_parameters():
|
| 226 |
if name == n:
|
| 227 |
if params.equal(p):
|
| 228 |
-
print(
|
| 229 |
-
print(
|
| 230 |
return model
|
| 231 |
|
| 232 |
|
|
@@ -238,7 +240,10 @@ class Attention(nn.Module):
|
|
| 238 |
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
|
| 239 |
assert n_state % config.n_head == 0
|
| 240 |
self.register_buffer(
|
| 241 |
-
"bias",
|
|
|
|
|
|
|
|
|
|
| 242 |
)
|
| 243 |
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
| 244 |
self.n_head = config.n_head
|
|
@@ -261,7 +266,9 @@ class Attention(nn.Module):
|
|
| 261 |
heads, index = find_pruneable_heads_and_indices(
|
| 262 |
heads, self.n_head, self.split_size // self.n_head, self.pruned_heads
|
| 263 |
)
|
| 264 |
-
index_attn = torch.cat(
|
|
|
|
|
|
|
| 265 |
|
| 266 |
# Prune conv1d layers
|
| 267 |
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
|
@@ -272,7 +279,9 @@ class Attention(nn.Module):
|
|
| 272 |
self.n_head = self.n_head - len(heads)
|
| 273 |
self.pruned_heads = self.pruned_heads.union(heads)
|
| 274 |
|
| 275 |
-
def _attn(
|
|
|
|
|
|
|
| 276 |
w = torch.matmul(q, k)
|
| 277 |
if self.scale:
|
| 278 |
w = w / (float(v.size(-1)) ** 0.5)
|
|
@@ -328,7 +337,9 @@ class Attention(nn.Module):
|
|
| 328 |
self, "q_attn"
|
| 329 |
), "If class is used as cross attention, the weights `q_attn` have to be defined. Please make sure to instantiate class with `Attention(..., is_cross_attention=True)`."
|
| 330 |
query = self.q_attn(hidden_states)
|
| 331 |
-
key, value = self.c_attn(encoder_hidden_states).split(
|
|
|
|
|
|
|
| 332 |
attention_mask = encoder_attention_mask
|
| 333 |
else:
|
| 334 |
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
|
@@ -337,16 +348,23 @@ class Attention(nn.Module):
|
|
| 337 |
key = self.split_heads(key, k=True)
|
| 338 |
value = self.split_heads(value)
|
| 339 |
if layer_past is not None:
|
| 340 |
-
past_key, past_value =
|
|
|
|
|
|
|
|
|
|
| 341 |
key = torch.cat((past_key, key), dim=-1)
|
| 342 |
value = torch.cat((past_value, value), dim=-2)
|
| 343 |
|
| 344 |
if use_cache is True:
|
| 345 |
-
present = torch.stack(
|
|
|
|
|
|
|
| 346 |
else:
|
| 347 |
present = (None,)
|
| 348 |
|
| 349 |
-
attn_outputs = self._attn(
|
|
|
|
|
|
|
| 350 |
a = attn_outputs[0]
|
| 351 |
|
| 352 |
a = self.merge_heads(a)
|
|
@@ -381,8 +399,12 @@ class Block(nn.Module):
|
|
| 381 |
self.attn = Attention(hidden_size, n_ctx, config, scale)
|
| 382 |
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 383 |
if config.add_cross_attention:
|
| 384 |
-
self.crossattention = Attention(
|
| 385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
self.mlp = MLP(inner_dim, config)
|
| 387 |
|
| 388 |
def forward(
|
|
@@ -425,7 +447,9 @@ class Block(nn.Module):
|
|
| 425 |
attn_output = cross_attn_outputs[0]
|
| 426 |
# residual connection
|
| 427 |
hidden_states = hidden_states + attn_output
|
| 428 |
-
outputs =
|
|
|
|
|
|
|
| 429 |
|
| 430 |
feed_forward_hidden_states = self.mlp(self.ln_1(hidden_states))
|
| 431 |
# residual connection
|
|
@@ -446,6 +470,7 @@ class GPT2PreTrainedModel(PreTrainedModel):
|
|
| 446 |
config_class = GPT2Config
|
| 447 |
load_tf_weights = load_tf_weights_in_gpt2
|
| 448 |
base_model_prefix = "transformer"
|
|
|
|
| 449 |
|
| 450 |
def __init__(self, *inputs, **kwargs):
|
| 451 |
super().__init__(*inputs, **kwargs)
|
|
@@ -588,6 +613,51 @@ GPT2_INPUTS_DOCSTRING = r"""
|
|
| 588 |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
| 589 |
"""
|
| 590 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 591 |
|
| 592 |
@add_start_docstrings(
|
| 593 |
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
|
|
@@ -603,12 +673,57 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 603 |
self.emb_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 604 |
|
| 605 |
self.drop = nn.Dropout(config.embd_pdrop)
|
| 606 |
-
self.h = nn.ModuleList(
|
|
|
|
|
|
|
| 607 |
if not _USE_GROVER:
|
| 608 |
self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 609 |
|
| 610 |
self.init_weights()
|
| 611 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 612 |
def get_input_embeddings(self):
|
| 613 |
return self.wte
|
| 614 |
|
|
@@ -645,15 +760,25 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 645 |
output_hidden_states=None,
|
| 646 |
return_dict=None,
|
| 647 |
):
|
| 648 |
-
output_attentions =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 649 |
output_hidden_states = (
|
| 650 |
-
output_hidden_states
|
|
|
|
|
|
|
| 651 |
)
|
| 652 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 653 |
-
return_dict =
|
|
|
|
|
|
|
| 654 |
|
| 655 |
if input_ids is not None and inputs_embeds is not None:
|
| 656 |
-
raise ValueError(
|
|
|
|
|
|
|
| 657 |
elif input_ids is not None:
|
| 658 |
input_shape = input_ids.size()
|
| 659 |
input_ids = input_ids.view(-1, input_shape[-1])
|
|
@@ -676,12 +801,18 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 676 |
past_length = past_key_values[0][0].size(-2)
|
| 677 |
if position_ids is None:
|
| 678 |
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 679 |
-
position_ids = torch.arange(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 680 |
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
| 681 |
|
| 682 |
# Attention mask.
|
| 683 |
if attention_mask is not None:
|
| 684 |
-
|
|
|
|
| 685 |
attention_mask = attention_mask.view(batch_size, -1)
|
| 686 |
# We create a 3D attention mask from a 2D tensor mask.
|
| 687 |
# Sizes are [batch_size, 1, 1, to_seq_length]
|
|
@@ -701,7 +832,11 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 701 |
# If a 2D ou 3D attention mask is provided for the cross-attention
|
| 702 |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 703 |
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
| 704 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 705 |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 706 |
if encoder_attention_mask is None:
|
| 707 |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
|
@@ -731,18 +866,40 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 731 |
|
| 732 |
presents = () if use_cache else None
|
| 733 |
all_self_attentions = () if output_attentions else None
|
| 734 |
-
all_cross_attentions = (
|
|
|
|
|
|
|
| 735 |
all_hidden_states = () if output_hidden_states else None
|
| 736 |
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 737 |
if output_hidden_states:
|
| 738 |
-
all_hidden_states = all_hidden_states + (
|
|
|
|
|
|
|
| 739 |
|
| 740 |
if getattr(self.config, "gradient_checkpointing", False):
|
| 741 |
|
| 742 |
def create_custom_forward(module):
|
| 743 |
def custom_forward(*inputs):
|
| 744 |
# checkpointing only works with tuple returns, not with lists
|
| 745 |
-
return tuple(
|
|
|
|
|
|
|
|
|
|
| 746 |
|
| 747 |
return custom_forward
|
| 748 |
|
|
@@ -772,9 +929,19 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 772 |
presents = presents + (present,)
|
| 773 |
|
| 774 |
if output_attentions:
|
| 775 |
-
all_self_attentions = all_self_attentions + (
|
|
|
|
|
|
|
| 776 |
if self.config.add_cross_attention:
|
| 777 |
-
all_cross_attentions = all_cross_attentions + (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 778 |
|
| 779 |
if not _USE_GROVER:
|
| 780 |
hidden_states = self.ln_f(hidden_states)
|
|
@@ -785,7 +952,17 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 785 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 786 |
|
| 787 |
if not return_dict:
|
| 788 |
-
return tuple(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 789 |
|
| 790 |
return BaseModelOutputWithPastAndCrossAttentions(
|
| 791 |
last_hidden_state=hidden_states,
|
|
@@ -813,6 +990,30 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|
| 813 |
|
| 814 |
self.init_weights()
|
| 815 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 816 |
def get_output_embeddings(self):
|
| 817 |
return self.lm_head
|
| 818 |
|
|
@@ -848,7 +1049,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|
| 848 |
@add_code_sample_docstrings(
|
| 849 |
tokenizer_class=_TOKENIZER_FOR_DOC,
|
| 850 |
checkpoint="gpt2",
|
| 851 |
-
output_type=
|
| 852 |
config_class=_CONFIG_FOR_DOC,
|
| 853 |
)
|
| 854 |
def forward(
|
|
@@ -874,7 +1075,9 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|
| 874 |
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
|
| 875 |
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
| 876 |
"""
|
| 877 |
-
return_dict =
|
|
|
|
|
|
|
| 878 |
|
| 879 |
transformer_outputs = self.transformer(
|
| 880 |
input_ids,
|
|
@@ -893,6 +1096,11 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|
| 893 |
)
|
| 894 |
hidden_states = transformer_outputs[0]
|
| 895 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 896 |
lm_logits = self.lm_head(hidden_states)
|
| 897 |
|
| 898 |
loss = None
|
|
@@ -902,13 +1110,15 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|
| 902 |
shift_labels = labels[..., 1:].contiguous()
|
| 903 |
# Flatten the tokens
|
| 904 |
loss_fct = CrossEntropyLoss()
|
| 905 |
-
loss = loss_fct(
|
|
|
|
|
|
|
| 906 |
|
| 907 |
if not return_dict:
|
| 908 |
output = (lm_logits,) + transformer_outputs[1:]
|
| 909 |
return ((loss,) + output) if loss is not None else output
|
| 910 |
|
| 911 |
-
return
|
| 912 |
loss=loss,
|
| 913 |
logits=lm_logits,
|
| 914 |
past_key_values=transformer_outputs.past_key_values,
|
|
@@ -917,6 +1127,23 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|
| 917 |
cross_attentions=transformer_outputs.cross_attentions,
|
| 918 |
)
|
| 919 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 920 |
|
| 921 |
@add_start_docstrings(
|
| 922 |
"""
|
|
@@ -937,6 +1164,34 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
| 937 |
|
| 938 |
self.init_weights()
|
| 939 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 940 |
def get_output_embeddings(self):
|
| 941 |
return self.lm_head
|
| 942 |
|
|
@@ -970,7 +1225,9 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
| 970 |
}
|
| 971 |
|
| 972 |
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 973 |
-
@replace_return_docstrings(
|
|
|
|
|
|
|
| 974 |
def forward(
|
| 975 |
self,
|
| 976 |
input_ids=None,
|
|
@@ -1029,7 +1286,9 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
| 1029 |
>>> mc_logits = outputs.mc_logits
|
| 1030 |
|
| 1031 |
"""
|
| 1032 |
-
return_dict =
|
|
|
|
|
|
|
| 1033 |
|
| 1034 |
transformer_outputs = self.transformer(
|
| 1035 |
input_ids,
|
|
@@ -1047,19 +1306,28 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
| 1047 |
|
| 1048 |
hidden_states = transformer_outputs[0]
|
| 1049 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1050 |
lm_logits = self.lm_head(hidden_states)
|
| 1051 |
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
|
| 1052 |
|
| 1053 |
mc_loss = None
|
| 1054 |
if mc_labels is not None:
|
| 1055 |
loss_fct = CrossEntropyLoss()
|
| 1056 |
-
mc_loss = loss_fct(
|
|
|
|
|
|
|
| 1057 |
lm_loss = None
|
| 1058 |
if labels is not None:
|
| 1059 |
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 1060 |
shift_labels = labels[..., 1:].contiguous()
|
| 1061 |
loss_fct = CrossEntropyLoss()
|
| 1062 |
-
lm_loss = loss_fct(
|
|
|
|
|
|
|
| 1063 |
|
| 1064 |
if not return_dict:
|
| 1065 |
output = (lm_logits, mc_logits) + transformer_outputs[1:]
|
|
@@ -1077,6 +1345,23 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
| 1077 |
attentions=transformer_outputs.attentions,
|
| 1078 |
)
|
| 1079 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1080 |
|
| 1081 |
@add_start_docstrings(
|
| 1082 |
"""
|
|
@@ -1104,6 +1389,10 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
|
| 1104 |
|
| 1105 |
self.init_weights()
|
| 1106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1107 |
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 1108 |
@add_code_sample_docstrings(
|
| 1109 |
tokenizer_class=_TOKENIZER_FOR_DOC,
|
|
@@ -1132,7 +1421,9 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
|
| 1132 |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
| 1133 |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1134 |
"""
|
| 1135 |
-
return_dict =
|
|
|
|
|
|
|
| 1136 |
|
| 1137 |
transformer_outputs = self.transformer(
|
| 1138 |
input_ids,
|
|
@@ -1162,7 +1453,9 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
|
| 1162 |
sequence_lengths = -1
|
| 1163 |
else:
|
| 1164 |
if input_ids is not None:
|
| 1165 |
-
sequence_lengths =
|
|
|
|
|
|
|
| 1166 |
else:
|
| 1167 |
sequence_lengths = -1
|
| 1168 |
logger.warning(
|
|
@@ -1180,7 +1473,9 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
|
| 1180 |
loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1))
|
| 1181 |
else:
|
| 1182 |
loss_fct = CrossEntropyLoss()
|
| 1183 |
-
loss = loss_fct(
|
|
|
|
|
|
|
| 1184 |
|
| 1185 |
if not return_dict:
|
| 1186 |
output = (pooled_logits,) + transformer_outputs[1:]
|
|
@@ -1194,3 +1489,111 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
|
| 1194 |
attentions=transformer_outputs.attentions,
|
| 1195 |
)
|
| 1196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
import logging
|
| 25 |
import os
|
|
|
|
| 26 |
from dataclasses import dataclass
|
| 27 |
from typing import List, Optional, Tuple
|
| 28 |
|
| 29 |
import torch
|
| 30 |
import torch.nn as nn
|
| 31 |
from torch.nn import CrossEntropyLoss, MSELoss
|
| 32 |
+
from transformers import CONFIG_NAME, WEIGHTS_NAME, GPT2Config, GPT2Model
|
|
|
|
|
|
|
| 33 |
from transformers.activations import ACT2FN
|
| 34 |
+
from transformers.file_utils import (
|
| 35 |
+
ModelOutput,
|
| 36 |
+
add_code_sample_docstrings,
|
| 37 |
+
add_start_docstrings,
|
| 38 |
+
add_start_docstrings_to_model_forward,
|
| 39 |
+
replace_return_docstrings,
|
|
|
|
|
|
|
| 40 |
)
|
|
|
|
|
|
|
|
|
|
| 41 |
from transformers.modeling_outputs import (
|
| 42 |
BaseModelOutputWithPastAndCrossAttentions,
|
| 43 |
CausalLMOutputWithCrossAttentions,
|
| 44 |
+
SequenceClassifierOutputWithPast,
|
| 45 |
+
TokenClassifierOutput,
|
| 46 |
)
|
| 47 |
+
from transformers.modeling_utils import (
|
| 48 |
+
Conv1D,
|
| 49 |
+
PreTrainedModel,
|
| 50 |
+
SequenceSummary,
|
| 51 |
+
find_pruneable_heads_and_indices,
|
| 52 |
+
prune_conv1d_layer,
|
|
|
|
| 53 |
)
|
| 54 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
| 55 |
|
| 56 |
# THe Difference from Transformers is code under _USE_GROVER
|
| 57 |
_USE_GROVER = True
|
|
|
|
| 76 |
logger.addHandler(console)
|
| 77 |
|
| 78 |
_GPT2_ML_TF_TO_TORCH = {
|
| 79 |
+
"LayerNorm_embed_norm": "emb_norm",
|
| 80 |
+
"pos_embed": "wpe.weight",
|
| 81 |
+
"word_embed": "wte.weight",
|
| 82 |
+
"layer": "h",
|
| 83 |
+
# Most importently This two layer norm must be put on the same position as gpt2-ml
|
| 84 |
+
# or generated data is bad, just repeat the last token
|
| 85 |
+
"LayerNorm_mlp_ln0": "ln_1",
|
| 86 |
+
"LayerNorm_mlp_ln1": "ln_2",
|
| 87 |
+
"intermediate": "mlp.c_fc",
|
| 88 |
+
"output": "mlp.c_proj",
|
| 89 |
+
"query_layer": "attn.c_attn",
|
| 90 |
+
"key_layer": "attn.c_attn",
|
| 91 |
+
"value_layer": "attn.c_attn",
|
| 92 |
+
"context_projection_layer": "attn.c_proj",
|
| 93 |
+
"gamma": "weight",
|
| 94 |
+
"kernel": "weight",
|
| 95 |
+
"beta": "bias",
|
| 96 |
+
"bias": "bias",
|
|
|
|
|
|
|
| 97 |
}
|
| 98 |
|
| 99 |
|
| 100 |
+
def convert_gpt2_checkpoint_to_pytorch(
|
| 101 |
+
gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path
|
| 102 |
+
):
|
| 103 |
# Construct model
|
| 104 |
if gpt2_config_file == "":
|
| 105 |
config = GPT2Config()
|
|
|
|
| 123 |
# XXX: MUST do like: convert_gpt2_checkpoint_to_pytorch('./model.ckpt-100000', './mega.json', './')
|
| 124 |
# https://github.com/tensorflow/models/issues/2675#issuecomment-516595597
|
| 125 |
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
| 126 |
+
"""Load tf checkpoints in a pytorch model"""
|
|
|
|
| 127 |
try:
|
| 128 |
import re
|
| 129 |
+
|
| 130 |
import tensorflow as tf
|
| 131 |
except ImportError:
|
| 132 |
logger.error(
|
|
|
|
| 147 |
arrays.append(array.squeeze())
|
| 148 |
|
| 149 |
import copy
|
| 150 |
+
|
| 151 |
orig_model = copy.deepcopy(model)
|
| 152 |
|
| 153 |
for name, array in zip(names, arrays):
|
|
|
|
| 155 |
name = name.split("/")
|
| 156 |
pointer = model
|
| 157 |
|
| 158 |
+
attn_layer = ""
|
| 159 |
for m_name in name:
|
| 160 |
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
| 161 |
scope_names = re.split(r"(\d+)", m_name)
|
|
|
|
| 163 |
scope_names = [m_name]
|
| 164 |
sname = scope_names[0]
|
| 165 |
|
| 166 |
+
if sname == "" or sname == "embeddings":
|
| 167 |
continue
|
| 168 |
elif sname not in _GPT2_ML_TF_TO_TORCH:
|
| 169 |
+
print("=========================================================")
|
| 170 |
+
logger.info("Skip var name {}".format(scope_names))
|
| 171 |
pointer = None
|
| 172 |
break
|
| 173 |
else:
|
| 174 |
tname = _GPT2_ML_TF_TO_TORCH[sname]
|
| 175 |
+
if "." in tname:
|
| 176 |
+
parent, child = tname.split(".")
|
| 177 |
pointer = getattr(pointer, parent)
|
| 178 |
pointer = getattr(pointer, child)
|
| 179 |
else:
|
| 180 |
pointer = getattr(pointer, tname)
|
| 181 |
|
| 182 |
+
if tname == "attn.c_attn":
|
| 183 |
attn_layer = sname
|
| 184 |
|
| 185 |
if len(scope_names) >= 2:
|
|
|
|
| 188 |
|
| 189 |
if pointer is None:
|
| 190 |
continue
|
| 191 |
+
if attn_layer == "":
|
| 192 |
try:
|
| 193 |
assert pointer.shape == array.shape
|
| 194 |
except AssertionError as e:
|
| 195 |
e.args += (pointer.shape, array.shape)
|
| 196 |
raise
|
| 197 |
+
logger.info(
|
| 198 |
+
"Initialize PyTorch weight {}, {}, {}".format(
|
| 199 |
+
name, array.mean(), pointer.mean()
|
| 200 |
+
)
|
| 201 |
+
)
|
| 202 |
+
if attn_layer == "":
|
| 203 |
pointer.data = torch.from_numpy(array)
|
| 204 |
else:
|
| 205 |
shape = pointer.shape
|
| 206 |
d = torch.from_numpy(array)
|
| 207 |
is_bias = len(shape) == 1
|
| 208 |
+
end = int(shape[0 if is_bias else 1] / 3)
|
| 209 |
m = dict(
|
| 210 |
+
query_layer=0,
|
| 211 |
+
key_layer=end,
|
| 212 |
+
value_layer=end * 2,
|
| 213 |
+
)
|
| 214 |
start = m[attn_layer]
|
| 215 |
end = start + end
|
| 216 |
if is_bias:
|
| 217 |
pointer.data[start:end] = d
|
| 218 |
else:
|
| 219 |
pointer.data[:, start:end] = d
|
| 220 |
+
logger.info(
|
| 221 |
+
"Initialize PyTorch weight {}, {}, {}".format(
|
| 222 |
+
name, array.mean(), pointer.mean()
|
| 223 |
+
)
|
| 224 |
+
)
|
| 225 |
|
| 226 |
for name, params in orig_model.named_parameters():
|
| 227 |
for n, p in model.named_parameters():
|
| 228 |
if name == n:
|
| 229 |
if params.equal(p):
|
| 230 |
+
print("--------------------------")
|
| 231 |
+
print(" %s not changed!" % n)
|
| 232 |
return model
|
| 233 |
|
| 234 |
|
|
|
|
| 240 |
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
|
| 241 |
assert n_state % config.n_head == 0
|
| 242 |
self.register_buffer(
|
| 243 |
+
"bias",
|
| 244 |
+
torch.tril(torch.ones((n_ctx, n_ctx), dtype=torch.uint8)).view(
|
| 245 |
+
1, 1, n_ctx, n_ctx
|
| 246 |
+
),
|
| 247 |
)
|
| 248 |
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
| 249 |
self.n_head = config.n_head
|
|
|
|
| 266 |
heads, index = find_pruneable_heads_and_indices(
|
| 267 |
heads, self.n_head, self.split_size // self.n_head, self.pruned_heads
|
| 268 |
)
|
| 269 |
+
index_attn = torch.cat(
|
| 270 |
+
[index, index + self.split_size, index + (2 * self.split_size)]
|
| 271 |
+
)
|
| 272 |
|
| 273 |
# Prune conv1d layers
|
| 274 |
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
|
|
|
| 279 |
self.n_head = self.n_head - len(heads)
|
| 280 |
self.pruned_heads = self.pruned_heads.union(heads)
|
| 281 |
|
| 282 |
+
def _attn(
|
| 283 |
+
self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False
|
| 284 |
+
):
|
| 285 |
w = torch.matmul(q, k)
|
| 286 |
if self.scale:
|
| 287 |
w = w / (float(v.size(-1)) ** 0.5)
|
|
|
|
| 337 |
self, "q_attn"
|
| 338 |
), "If class is used as cross attention, the weights `q_attn` have to be defined. Please make sure to instantiate class with `Attention(..., is_cross_attention=True)`."
|
| 339 |
query = self.q_attn(hidden_states)
|
| 340 |
+
key, value = self.c_attn(encoder_hidden_states).split(
|
| 341 |
+
self.split_size, dim=2
|
| 342 |
+
)
|
| 343 |
attention_mask = encoder_attention_mask
|
| 344 |
else:
|
| 345 |
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
|
|
|
| 348 |
key = self.split_heads(key, k=True)
|
| 349 |
value = self.split_heads(value)
|
| 350 |
if layer_past is not None:
|
| 351 |
+
past_key, past_value = (
|
| 352 |
+
layer_past[0].transpose(-2, -1),
|
| 353 |
+
layer_past[1],
|
| 354 |
+
) # transpose back cf below
|
| 355 |
key = torch.cat((past_key, key), dim=-1)
|
| 356 |
value = torch.cat((past_value, value), dim=-2)
|
| 357 |
|
| 358 |
if use_cache is True:
|
| 359 |
+
present = torch.stack(
|
| 360 |
+
(key.transpose(-2, -1), value)
|
| 361 |
+
) # transpose to have same shapes for stacking
|
| 362 |
else:
|
| 363 |
present = (None,)
|
| 364 |
|
| 365 |
+
attn_outputs = self._attn(
|
| 366 |
+
query, key, value, attention_mask, head_mask, output_attentions
|
| 367 |
+
)
|
| 368 |
a = attn_outputs[0]
|
| 369 |
|
| 370 |
a = self.merge_heads(a)
|
|
|
|
| 399 |
self.attn = Attention(hidden_size, n_ctx, config, scale)
|
| 400 |
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 401 |
if config.add_cross_attention:
|
| 402 |
+
self.crossattention = Attention(
|
| 403 |
+
hidden_size, n_ctx, config, scale, is_cross_attention=True
|
| 404 |
+
)
|
| 405 |
+
self.ln_cross_attn = nn.LayerNorm(
|
| 406 |
+
hidden_size, eps=config.layer_norm_epsilon
|
| 407 |
+
)
|
| 408 |
self.mlp = MLP(inner_dim, config)
|
| 409 |
|
| 410 |
def forward(
|
|
|
|
| 447 |
attn_output = cross_attn_outputs[0]
|
| 448 |
# residual connection
|
| 449 |
hidden_states = hidden_states + attn_output
|
| 450 |
+
outputs = (
|
| 451 |
+
outputs + cross_attn_outputs[2:]
|
| 452 |
+
) # add cross attentions if we output attention weights
|
| 453 |
|
| 454 |
feed_forward_hidden_states = self.mlp(self.ln_1(hidden_states))
|
| 455 |
# residual connection
|
|
|
|
| 470 |
config_class = GPT2Config
|
| 471 |
load_tf_weights = load_tf_weights_in_gpt2
|
| 472 |
base_model_prefix = "transformer"
|
| 473 |
+
is_parallelizable = True
|
| 474 |
|
| 475 |
def __init__(self, *inputs, **kwargs):
|
| 476 |
super().__init__(*inputs, **kwargs)
|
|
|
|
| 613 |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
| 614 |
"""
|
| 615 |
|
| 616 |
+
PARALLELIZE_DOCSTRING = r"""
|
| 617 |
+
This is an experimental feature and is a subject to change at a moment's notice.
|
| 618 |
+
|
| 619 |
+
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
|
| 620 |
+
it will evenly distribute blocks across all devices.
|
| 621 |
+
|
| 622 |
+
Args:
|
| 623 |
+
device_map (:obj:`Dict[int, list]`, optional, defaults to None):
|
| 624 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
| 625 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
| 626 |
+
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
|
| 627 |
+
following number of attention modules:
|
| 628 |
+
|
| 629 |
+
- gpt2: 12
|
| 630 |
+
- gpt2-medium: 24
|
| 631 |
+
- gpt2-large: 36
|
| 632 |
+
- gpt2-xl: 48
|
| 633 |
+
|
| 634 |
+
Example::
|
| 635 |
+
|
| 636 |
+
# Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
|
| 637 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2-xl')
|
| 638 |
+
device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
|
| 639 |
+
|
| 640 |
+
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
|
| 641 |
+
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
|
| 642 |
+
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]}
|
| 643 |
+
model.parallelize(device_map)
|
| 644 |
+
"""
|
| 645 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
| 646 |
+
Moves the model to cpu from a model parallel state.
|
| 647 |
+
|
| 648 |
+
Example::
|
| 649 |
+
|
| 650 |
+
# On a 4 GPU machine with gpt2-large:
|
| 651 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2-large')
|
| 652 |
+
device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7],
|
| 653 |
+
|
| 654 |
+
1: [8, 9, 10, 11, 12, 13, 14, 15],
|
| 655 |
+
2: [16, 17, 18, 19, 20, 21, 22, 23],
|
| 656 |
+
3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]}
|
| 657 |
+
model.parallelize(device_map) # Splits the model across several devices
|
| 658 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
| 659 |
+
"""
|
| 660 |
+
|
| 661 |
|
| 662 |
@add_start_docstrings(
|
| 663 |
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
|
|
|
|
| 673 |
self.emb_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 674 |
|
| 675 |
self.drop = nn.Dropout(config.embd_pdrop)
|
| 676 |
+
self.h = nn.ModuleList(
|
| 677 |
+
[Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)]
|
| 678 |
+
)
|
| 679 |
if not _USE_GROVER:
|
| 680 |
self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 681 |
|
| 682 |
self.init_weights()
|
| 683 |
|
| 684 |
+
# Model parallel
|
| 685 |
+
self.model_parallel = False
|
| 686 |
+
self.device_map = None
|
| 687 |
+
|
| 688 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 689 |
+
def parallelize(self, device_map=None):
|
| 690 |
+
# Check validity of device_map
|
| 691 |
+
self.device_map = (
|
| 692 |
+
get_device_map(len(self.h), range(torch.cuda.device_count()))
|
| 693 |
+
if device_map is None
|
| 694 |
+
else device_map
|
| 695 |
+
)
|
| 696 |
+
assert_device_map(self.device_map, len(self.h))
|
| 697 |
+
self.model_parallel = True
|
| 698 |
+
self.first_device = (
|
| 699 |
+
"cpu"
|
| 700 |
+
if "cpu" in self.device_map.keys()
|
| 701 |
+
else "cuda:" + str(min(self.device_map.keys()))
|
| 702 |
+
)
|
| 703 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
| 704 |
+
self.wte = self.wte.to(self.first_device)
|
| 705 |
+
self.wpe = self.wpe.to(self.first_device)
|
| 706 |
+
# Load onto devices
|
| 707 |
+
for k, v in self.device_map.items():
|
| 708 |
+
for block in v:
|
| 709 |
+
cuda_device = "cuda:" + str(k)
|
| 710 |
+
self.h[block] = self.h[block].to(cuda_device)
|
| 711 |
+
# ln_f to last
|
| 712 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
| 713 |
+
|
| 714 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
| 715 |
+
def deparallelize(self):
|
| 716 |
+
self.model_parallel = False
|
| 717 |
+
self.device_map = None
|
| 718 |
+
self.first_device = "cpu"
|
| 719 |
+
self.last_device = "cpu"
|
| 720 |
+
self.wte = self.wte.to("cpu")
|
| 721 |
+
self.wpe = self.wpe.to("cpu")
|
| 722 |
+
for index in range(len(self.h)):
|
| 723 |
+
self.h[index] = self.h[index].to("cpu")
|
| 724 |
+
self.ln_f = self.ln_f.to("cpu")
|
| 725 |
+
torch.cuda.empty_cache()
|
| 726 |
+
|
| 727 |
def get_input_embeddings(self):
|
| 728 |
return self.wte
|
| 729 |
|
|
|
|
| 760 |
output_hidden_states=None,
|
| 761 |
return_dict=None,
|
| 762 |
):
|
| 763 |
+
output_attentions = (
|
| 764 |
+
output_attentions
|
| 765 |
+
if output_attentions is not None
|
| 766 |
+
else self.config.output_attentions
|
| 767 |
+
)
|
| 768 |
output_hidden_states = (
|
| 769 |
+
output_hidden_states
|
| 770 |
+
if output_hidden_states is not None
|
| 771 |
+
else self.config.output_hidden_states
|
| 772 |
)
|
| 773 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 774 |
+
return_dict = (
|
| 775 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 776 |
+
)
|
| 777 |
|
| 778 |
if input_ids is not None and inputs_embeds is not None:
|
| 779 |
+
raise ValueError(
|
| 780 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
| 781 |
+
)
|
| 782 |
elif input_ids is not None:
|
| 783 |
input_shape = input_ids.size()
|
| 784 |
input_ids = input_ids.view(-1, input_shape[-1])
|
|
|
|
| 801 |
past_length = past_key_values[0][0].size(-2)
|
| 802 |
if position_ids is None:
|
| 803 |
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 804 |
+
position_ids = torch.arange(
|
| 805 |
+
past_length,
|
| 806 |
+
input_shape[-1] + past_length,
|
| 807 |
+
dtype=torch.long,
|
| 808 |
+
device=device,
|
| 809 |
+
)
|
| 810 |
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
| 811 |
|
| 812 |
# Attention mask.
|
| 813 |
if attention_mask is not None:
|
| 814 |
+
if batch_size <= 0:
|
| 815 |
+
raise ValueError("batch_size has to be defined and > 0")
|
| 816 |
attention_mask = attention_mask.view(batch_size, -1)
|
| 817 |
# We create a 3D attention mask from a 2D tensor mask.
|
| 818 |
# Sizes are [batch_size, 1, 1, to_seq_length]
|
|
|
|
| 832 |
# If a 2D ou 3D attention mask is provided for the cross-attention
|
| 833 |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 834 |
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
| 835 |
+
(
|
| 836 |
+
encoder_batch_size,
|
| 837 |
+
encoder_sequence_length,
|
| 838 |
+
_,
|
| 839 |
+
) = encoder_hidden_states.size()
|
| 840 |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 841 |
if encoder_attention_mask is None:
|
| 842 |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
|
|
|
| 866 |
|
| 867 |
presents = () if use_cache else None
|
| 868 |
all_self_attentions = () if output_attentions else None
|
| 869 |
+
all_cross_attentions = (
|
| 870 |
+
() if output_attentions and self.config.add_cross_attention else None
|
| 871 |
+
)
|
| 872 |
all_hidden_states = () if output_hidden_states else None
|
| 873 |
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
| 874 |
+
|
| 875 |
+
# Model parallel
|
| 876 |
+
if self.model_parallel:
|
| 877 |
+
torch.cuda.set_device(hidden_states.device)
|
| 878 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
| 879 |
+
if layer_past is not None:
|
| 880 |
+
layer_past = tuple(
|
| 881 |
+
past_state.to(hidden_states.device) for past_state in layer_past
|
| 882 |
+
)
|
| 883 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
| 884 |
+
if attention_mask is not None:
|
| 885 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
| 886 |
+
if isinstance(head_mask, torch.Tensor):
|
| 887 |
+
head_mask = head_mask.to(hidden_states.device)
|
| 888 |
+
|
| 889 |
if output_hidden_states:
|
| 890 |
+
all_hidden_states = all_hidden_states + (
|
| 891 |
+
hidden_states.view(*output_shape),
|
| 892 |
+
)
|
| 893 |
|
| 894 |
if getattr(self.config, "gradient_checkpointing", False):
|
| 895 |
|
| 896 |
def create_custom_forward(module):
|
| 897 |
def custom_forward(*inputs):
|
| 898 |
# checkpointing only works with tuple returns, not with lists
|
| 899 |
+
return tuple(
|
| 900 |
+
output
|
| 901 |
+
for output in module(*inputs, use_cache, output_attentions)
|
| 902 |
+
)
|
| 903 |
|
| 904 |
return custom_forward
|
| 905 |
|
|
|
|
| 929 |
presents = presents + (present,)
|
| 930 |
|
| 931 |
if output_attentions:
|
| 932 |
+
all_self_attentions = all_self_attentions + (
|
| 933 |
+
outputs[2 if use_cache else 1],
|
| 934 |
+
)
|
| 935 |
if self.config.add_cross_attention:
|
| 936 |
+
all_cross_attentions = all_cross_attentions + (
|
| 937 |
+
outputs[3 if use_cache else 2],
|
| 938 |
+
)
|
| 939 |
+
|
| 940 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
| 941 |
+
if self.model_parallel:
|
| 942 |
+
for k, v in self.device_map.items():
|
| 943 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
| 944 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
| 945 |
|
| 946 |
if not _USE_GROVER:
|
| 947 |
hidden_states = self.ln_f(hidden_states)
|
|
|
|
| 952 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 953 |
|
| 954 |
if not return_dict:
|
| 955 |
+
return tuple(
|
| 956 |
+
v
|
| 957 |
+
for v in [
|
| 958 |
+
hidden_states,
|
| 959 |
+
presents,
|
| 960 |
+
all_hidden_states,
|
| 961 |
+
all_self_attentions,
|
| 962 |
+
all_cross_attentions,
|
| 963 |
+
]
|
| 964 |
+
if v is not None
|
| 965 |
+
)
|
| 966 |
|
| 967 |
return BaseModelOutputWithPastAndCrossAttentions(
|
| 968 |
last_hidden_state=hidden_states,
|
|
|
|
| 990 |
|
| 991 |
self.init_weights()
|
| 992 |
|
| 993 |
+
# Model parallel
|
| 994 |
+
self.model_parallel = False
|
| 995 |
+
self.device_map = None
|
| 996 |
+
|
| 997 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 998 |
+
def parallelize(self, device_map=None):
|
| 999 |
+
self.device_map = (
|
| 1000 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
| 1001 |
+
if device_map is None
|
| 1002 |
+
else device_map
|
| 1003 |
+
)
|
| 1004 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
| 1005 |
+
self.transformer.parallelize(self.device_map)
|
| 1006 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
| 1007 |
+
self.model_parallel = True
|
| 1008 |
+
|
| 1009 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
| 1010 |
+
def deparallelize(self):
|
| 1011 |
+
self.transformer.deparallelize()
|
| 1012 |
+
self.transformer = self.transformer.to("cpu")
|
| 1013 |
+
self.lm_head = self.lm_head.to("cpu")
|
| 1014 |
+
self.model_parallel = False
|
| 1015 |
+
torch.cuda.empty_cache()
|
| 1016 |
+
|
| 1017 |
def get_output_embeddings(self):
|
| 1018 |
return self.lm_head
|
| 1019 |
|
|
|
|
| 1049 |
@add_code_sample_docstrings(
|
| 1050 |
tokenizer_class=_TOKENIZER_FOR_DOC,
|
| 1051 |
checkpoint="gpt2",
|
| 1052 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
| 1053 |
config_class=_CONFIG_FOR_DOC,
|
| 1054 |
)
|
| 1055 |
def forward(
|
|
|
|
| 1075 |
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
|
| 1076 |
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
| 1077 |
"""
|
| 1078 |
+
return_dict = (
|
| 1079 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1080 |
+
)
|
| 1081 |
|
| 1082 |
transformer_outputs = self.transformer(
|
| 1083 |
input_ids,
|
|
|
|
| 1096 |
)
|
| 1097 |
hidden_states = transformer_outputs[0]
|
| 1098 |
|
| 1099 |
+
# Set device for model parallelism
|
| 1100 |
+
if self.model_parallel:
|
| 1101 |
+
torch.cuda.set_device(self.transformer.first_device)
|
| 1102 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
| 1103 |
+
|
| 1104 |
lm_logits = self.lm_head(hidden_states)
|
| 1105 |
|
| 1106 |
loss = None
|
|
|
|
| 1110 |
shift_labels = labels[..., 1:].contiguous()
|
| 1111 |
# Flatten the tokens
|
| 1112 |
loss_fct = CrossEntropyLoss()
|
| 1113 |
+
loss = loss_fct(
|
| 1114 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
| 1115 |
+
)
|
| 1116 |
|
| 1117 |
if not return_dict:
|
| 1118 |
output = (lm_logits,) + transformer_outputs[1:]
|
| 1119 |
return ((loss,) + output) if loss is not None else output
|
| 1120 |
|
| 1121 |
+
return CausalLMOutputWithCrossAttentions(
|
| 1122 |
loss=loss,
|
| 1123 |
logits=lm_logits,
|
| 1124 |
past_key_values=transformer_outputs.past_key_values,
|
|
|
|
| 1127 |
cross_attentions=transformer_outputs.cross_attentions,
|
| 1128 |
)
|
| 1129 |
|
| 1130 |
+
@staticmethod
|
| 1131 |
+
def _reorder_cache(
|
| 1132 |
+
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 1133 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
| 1134 |
+
"""
|
| 1135 |
+
This function is used to re-order the :obj:`past_key_values` cache if
|
| 1136 |
+
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
| 1137 |
+
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
| 1138 |
+
"""
|
| 1139 |
+
return tuple(
|
| 1140 |
+
tuple(
|
| 1141 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 1142 |
+
for past_state in layer_past
|
| 1143 |
+
)
|
| 1144 |
+
for layer_past in past
|
| 1145 |
+
)
|
| 1146 |
+
|
| 1147 |
|
| 1148 |
@add_start_docstrings(
|
| 1149 |
"""
|
|
|
|
| 1164 |
|
| 1165 |
self.init_weights()
|
| 1166 |
|
| 1167 |
+
# Model parallel
|
| 1168 |
+
self.model_parallel = False
|
| 1169 |
+
self.device_map = None
|
| 1170 |
+
|
| 1171 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 1172 |
+
def parallelize(self, device_map=None):
|
| 1173 |
+
self.device_map = (
|
| 1174 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
| 1175 |
+
if device_map is None
|
| 1176 |
+
else device_map
|
| 1177 |
+
)
|
| 1178 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
| 1179 |
+
self.transformer.parallelize(self.device_map)
|
| 1180 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
| 1181 |
+
self.multiple_choice_head = self.multiple_choice_head.to(
|
| 1182 |
+
self.transformer.first_device
|
| 1183 |
+
)
|
| 1184 |
+
self.model_parallel = True
|
| 1185 |
+
|
| 1186 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
| 1187 |
+
def deparallelize(self):
|
| 1188 |
+
self.transformer.deparallelize()
|
| 1189 |
+
self.transformer = self.transformer.to("cpu")
|
| 1190 |
+
self.lm_head = self.lm_head.to("cpu")
|
| 1191 |
+
self.multiple_choice_head = self.multiple_choice_head.to("cpu")
|
| 1192 |
+
self.model_parallel = False
|
| 1193 |
+
torch.cuda.empty_cache()
|
| 1194 |
+
|
| 1195 |
def get_output_embeddings(self):
|
| 1196 |
return self.lm_head
|
| 1197 |
|
|
|
|
| 1225 |
}
|
| 1226 |
|
| 1227 |
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 1228 |
+
@replace_return_docstrings(
|
| 1229 |
+
output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC
|
| 1230 |
+
)
|
| 1231 |
def forward(
|
| 1232 |
self,
|
| 1233 |
input_ids=None,
|
|
|
|
| 1286 |
>>> mc_logits = outputs.mc_logits
|
| 1287 |
|
| 1288 |
"""
|
| 1289 |
+
return_dict = (
|
| 1290 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1291 |
+
)
|
| 1292 |
|
| 1293 |
transformer_outputs = self.transformer(
|
| 1294 |
input_ids,
|
|
|
|
| 1306 |
|
| 1307 |
hidden_states = transformer_outputs[0]
|
| 1308 |
|
| 1309 |
+
# Set device for model parallelism
|
| 1310 |
+
if self.model_parallel:
|
| 1311 |
+
torch.cuda.set_device(self.transformer.first_device)
|
| 1312 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
| 1313 |
+
|
| 1314 |
lm_logits = self.lm_head(hidden_states)
|
| 1315 |
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
|
| 1316 |
|
| 1317 |
mc_loss = None
|
| 1318 |
if mc_labels is not None:
|
| 1319 |
loss_fct = CrossEntropyLoss()
|
| 1320 |
+
mc_loss = loss_fct(
|
| 1321 |
+
mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)
|
| 1322 |
+
)
|
| 1323 |
lm_loss = None
|
| 1324 |
if labels is not None:
|
| 1325 |
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 1326 |
shift_labels = labels[..., 1:].contiguous()
|
| 1327 |
loss_fct = CrossEntropyLoss()
|
| 1328 |
+
lm_loss = loss_fct(
|
| 1329 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
| 1330 |
+
)
|
| 1331 |
|
| 1332 |
if not return_dict:
|
| 1333 |
output = (lm_logits, mc_logits) + transformer_outputs[1:]
|
|
|
|
| 1345 |
attentions=transformer_outputs.attentions,
|
| 1346 |
)
|
| 1347 |
|
| 1348 |
+
@staticmethod
|
| 1349 |
+
def _reorder_cache(
|
| 1350 |
+
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 1351 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
| 1352 |
+
"""
|
| 1353 |
+
This function is used to re-order the :obj:`past_key_values` cache if
|
| 1354 |
+
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
| 1355 |
+
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
| 1356 |
+
"""
|
| 1357 |
+
return tuple(
|
| 1358 |
+
tuple(
|
| 1359 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 1360 |
+
for past_state in layer_past
|
| 1361 |
+
)
|
| 1362 |
+
for layer_past in past
|
| 1363 |
+
)
|
| 1364 |
+
|
| 1365 |
|
| 1366 |
@add_start_docstrings(
|
| 1367 |
"""
|
|
|
|
| 1389 |
|
| 1390 |
self.init_weights()
|
| 1391 |
|
| 1392 |
+
# Model parallel
|
| 1393 |
+
self.model_parallel = False
|
| 1394 |
+
self.device_map = None
|
| 1395 |
+
|
| 1396 |
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 1397 |
@add_code_sample_docstrings(
|
| 1398 |
tokenizer_class=_TOKENIZER_FOR_DOC,
|
|
|
|
| 1421 |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
| 1422 |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1423 |
"""
|
| 1424 |
+
return_dict = (
|
| 1425 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1426 |
+
)
|
| 1427 |
|
| 1428 |
transformer_outputs = self.transformer(
|
| 1429 |
input_ids,
|
|
|
|
| 1453 |
sequence_lengths = -1
|
| 1454 |
else:
|
| 1455 |
if input_ids is not None:
|
| 1456 |
+
sequence_lengths = (
|
| 1457 |
+
torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
| 1458 |
+
)
|
| 1459 |
else:
|
| 1460 |
sequence_lengths = -1
|
| 1461 |
logger.warning(
|
|
|
|
| 1473 |
loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1))
|
| 1474 |
else:
|
| 1475 |
loss_fct = CrossEntropyLoss()
|
| 1476 |
+
loss = loss_fct(
|
| 1477 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
| 1478 |
+
)
|
| 1479 |
|
| 1480 |
if not return_dict:
|
| 1481 |
output = (pooled_logits,) + transformer_outputs[1:]
|
|
|
|
| 1489 |
attentions=transformer_outputs.attentions,
|
| 1490 |
)
|
| 1491 |
|
| 1492 |
+
|
| 1493 |
+
@add_start_docstrings(
|
| 1494 |
+
"""
|
| 1495 |
+
GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
| 1496 |
+
Named-Entity-Recognition (NER) tasks.
|
| 1497 |
+
""",
|
| 1498 |
+
GPT2_START_DOCSTRING,
|
| 1499 |
+
)
|
| 1500 |
+
class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
| 1501 |
+
def __init__(self, config):
|
| 1502 |
+
super().__init__(config)
|
| 1503 |
+
self.num_labels = config.num_labels
|
| 1504 |
+
|
| 1505 |
+
self.transformer = GPT2Model(config)
|
| 1506 |
+
if (
|
| 1507 |
+
hasattr(config, "classifier_dropout")
|
| 1508 |
+
and config.classifier_dropout is not None
|
| 1509 |
+
):
|
| 1510 |
+
classifier_dropout = config.classifier_dropout
|
| 1511 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
| 1512 |
+
classifier_dropout = config.hidden_dropout
|
| 1513 |
+
else:
|
| 1514 |
+
classifier_dropout = 0.1
|
| 1515 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1516 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1517 |
+
|
| 1518 |
+
self.init_weights()
|
| 1519 |
+
|
| 1520 |
+
# Model parallel
|
| 1521 |
+
self.model_parallel = False
|
| 1522 |
+
self.device_map = None
|
| 1523 |
+
|
| 1524 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 1525 |
+
@add_code_sample_docstrings(
|
| 1526 |
+
tokenizer_class=_TOKENIZER_FOR_DOC,
|
| 1527 |
+
checkpoint="microsoft/DialogRPT-updown",
|
| 1528 |
+
output_type=TokenClassifierOutput,
|
| 1529 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1530 |
+
)
|
| 1531 |
+
def forward(
|
| 1532 |
+
self,
|
| 1533 |
+
input_ids=None,
|
| 1534 |
+
past_key_values=None,
|
| 1535 |
+
attention_mask=None,
|
| 1536 |
+
token_type_ids=None,
|
| 1537 |
+
position_ids=None,
|
| 1538 |
+
head_mask=None,
|
| 1539 |
+
inputs_embeds=None,
|
| 1540 |
+
labels=None,
|
| 1541 |
+
use_cache=None,
|
| 1542 |
+
output_attentions=None,
|
| 1543 |
+
output_hidden_states=None,
|
| 1544 |
+
return_dict=None,
|
| 1545 |
+
):
|
| 1546 |
+
r"""
|
| 1547 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
| 1548 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
| 1549 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
| 1550 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1551 |
+
"""
|
| 1552 |
+
return_dict = (
|
| 1553 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1554 |
+
)
|
| 1555 |
+
|
| 1556 |
+
transformer_outputs = self.transformer(
|
| 1557 |
+
input_ids,
|
| 1558 |
+
past_key_values=past_key_values,
|
| 1559 |
+
attention_mask=attention_mask,
|
| 1560 |
+
token_type_ids=token_type_ids,
|
| 1561 |
+
position_ids=position_ids,
|
| 1562 |
+
head_mask=head_mask,
|
| 1563 |
+
inputs_embeds=inputs_embeds,
|
| 1564 |
+
use_cache=use_cache,
|
| 1565 |
+
output_attentions=output_attentions,
|
| 1566 |
+
output_hidden_states=output_hidden_states,
|
| 1567 |
+
return_dict=return_dict,
|
| 1568 |
+
)
|
| 1569 |
+
|
| 1570 |
+
hidden_states = transformer_outputs[0]
|
| 1571 |
+
hidden_states = self.dropout(hidden_states)
|
| 1572 |
+
logits = self.classifier(hidden_states)
|
| 1573 |
+
|
| 1574 |
+
loss = None
|
| 1575 |
+
if labels is not None:
|
| 1576 |
+
loss_fct = CrossEntropyLoss()
|
| 1577 |
+
# Only keep active parts of the loss
|
| 1578 |
+
if attention_mask is not None:
|
| 1579 |
+
active_loss = attention_mask.view(-1) == 1
|
| 1580 |
+
active_logits = logits.view(-1, self.num_labels)
|
| 1581 |
+
active_labels = torch.where(
|
| 1582 |
+
active_loss,
|
| 1583 |
+
labels.view(-1),
|
| 1584 |
+
torch.tensor(loss_fct.ignore_index).type_as(labels),
|
| 1585 |
+
)
|
| 1586 |
+
loss = loss_fct(active_logits, active_labels)
|
| 1587 |
+
else:
|
| 1588 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1589 |
+
|
| 1590 |
+
if not return_dict:
|
| 1591 |
+
output = (logits,) + transformer_outputs[2:]
|
| 1592 |
+
return ((loss,) + output) if loss is not None else output
|
| 1593 |
+
|
| 1594 |
+
return TokenClassifierOutput(
|
| 1595 |
+
loss=loss,
|
| 1596 |
+
logits=logits,
|
| 1597 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1598 |
+
attentions=transformer_outputs.attentions,
|
| 1599 |
+
)
|