Spaces:
Runtime error
Runtime error
| import typing | |
| import gradio as gr | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import torch.nn as nn | |
| from transformers import Wav2Vec2Processor | |
| from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model | |
| from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel | |
| import audiofile | |
| import audresample | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| duration = 1 # limit processing of audio | |
| age_gender_model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender" | |
| expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim" | |
| class AgeGenderHead(nn.Module): | |
| r"""Age-gender model head.""" | |
| def __init__(self, config, num_labels): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.dropout = nn.Dropout(config.final_dropout) | |
| self.out_proj = nn.Linear(config.hidden_size, num_labels) | |
| def forward(self, features, **kwargs): | |
| x = features | |
| x = self.dropout(x) | |
| x = self.dense(x) | |
| x = torch.tanh(x) | |
| x = self.dropout(x) | |
| x = self.out_proj(x) | |
| return x | |
| class AgeGenderModel(Wav2Vec2PreTrainedModel): | |
| r"""Age-gender recognition model.""" | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.config = config | |
| self.wav2vec2 = Wav2Vec2Model(config) | |
| self.age = AgeGenderHead(config, 1) | |
| self.gender = AgeGenderHead(config, 3) | |
| self.init_weights() | |
| def forward( | |
| self, | |
| input_values, | |
| ): | |
| outputs = self.wav2vec2(input_values) | |
| hidden_states = outputs[0] | |
| hidden_states = torch.mean(hidden_states, dim=1) | |
| logits_age = self.age(hidden_states) | |
| logits_gender = torch.softmax(self.gender(hidden_states), dim=1) | |
| return hidden_states, logits_age, logits_gender | |
| class ExpressionHead(nn.Module): | |
| r"""Expression model head.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.dropout = nn.Dropout(config.final_dropout) | |
| self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
| def forward(self, features, **kwargs): | |
| x = features | |
| x = self.dropout(x) | |
| x = self.dense(x) | |
| x = torch.tanh(x) | |
| x = self.dropout(x) | |
| x = self.out_proj(x) | |
| return x | |
| class ExpressionModel(Wav2Vec2PreTrainedModel): | |
| r"""speech expression model.""" | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.config = config | |
| self.wav2vec2 = Wav2Vec2Model(config) | |
| self.classifier = ExpressionHead(config) | |
| self.init_weights() | |
| def forward(self, input_values): | |
| outputs = self.wav2vec2(input_values) | |
| hidden_states = outputs[0] | |
| hidden_states = torch.mean(hidden_states, dim=1) | |
| logits = self.classifier(hidden_states) | |
| return hidden_states, logits | |
| # Load models from hub | |
| age_gender_processor = Wav2Vec2Processor.from_pretrained(age_gender_model_name) | |
| age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name) | |
| expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name) | |
| expression_model = ExpressionModel.from_pretrained(expression_model_name) | |
| def process_func(x: np.ndarray, sampling_rate: int) -> typing.Tuple[str, dict, str]: | |
| r"""Predict age and gender or extract embeddings from raw audio signal.""" | |
| # run through processor to normalize signal | |
| # always returns a batch, so we just get the first entry | |
| # then we put it on the device | |
| results = [] | |
| for processor, model in zip( | |
| [age_gender_processor, expression_processor], | |
| [age_gender_model, expression_model], | |
| ): | |
| y = processor(x, sampling_rate=sampling_rate) | |
| y = y['input_values'][0] | |
| y = y.reshape(1, -1) | |
| y = torch.from_numpy(y).to(device) | |
| # run through model | |
| with torch.no_grad(): | |
| y = model(y) | |
| if len(y) == 3: | |
| # Age-gender model | |
| y = torch.hstack([y[1], y[2]]) | |
| else: | |
| # Expression model | |
| y = y[1] | |
| # convert to numpy | |
| y = y.detach().cpu().numpy() | |
| results.append(y[0]) | |
| # Plot A/D/V values | |
| plot_expression(results[1][0], results[1][1], results[1][2]) | |
| expression_file = "expression.png" | |
| plt.savefig(expression_file) | |
| return ( | |
| f"{round(100 * results[0][0])} years", # age | |
| { | |
| "female": results[0][1], | |
| "male": results[0][2], | |
| "child": results[0][3], | |
| }, | |
| expression_file, | |
| ) | |
| def recognize(input_file: str) -> typing.Tuple[str, dict, str]: | |
| # sampling_rate, signal = input_microphone | |
| # signal = signal.astype(np.float32, order="C") / 32768.0 | |
| if input_file is None: | |
| raise gr.Error( | |
| "No audio file submitted! " | |
| "Please upload or record an audio file " | |
| "before submitting your request." | |
| ) | |
| signal, sampling_rate = audiofile.read(input_file, duration=duration) | |
| # Resample to sampling rate supported byu the models | |
| target_rate = 16000 | |
| signal = audresample.resample(signal, sampling_rate, target_rate) | |
| return process_func(signal, target_rate) | |
| def plot_expression(arousal, dominance, valence): | |
| r"""3D pixel plot of arousal, dominance, valence.""" | |
| # Voxels per dimension | |
| voxels = 7 | |
| # Create voxel grid | |
| x, y, z = np.indices((voxels + 1, voxels + 1, voxels + 1)) | |
| voxel = ( | |
| (x == round(arousal * voxels)) | |
| & (y == round(dominance * voxels)) | |
| & (z == round(valence * voxels)) | |
| ) | |
| projection = ( | |
| (x == round(arousal * voxels)) | |
| & (y == round(dominance * voxels)) | |
| & (z < round(valence * voxels)) | |
| ) | |
| colors = np.empty((voxel | projection).shape, dtype=object) | |
| colors[voxel] = "#fcb06c" | |
| colors[projection] = "#fed7a9" | |
| ax = plt.figure().add_subplot(projection='3d') | |
| ax.voxels(voxel | projection, facecolors=colors, edgecolor='k') | |
| ax.set_xlim([0, voxels]) | |
| ax.set_ylim([0, voxels]) | |
| ax.set_zlim([0, voxels]) | |
| ax.set_aspect("equal") | |
| ax.set_xlabel("arousal", fontsize="large", labelpad=0) | |
| ax.set_ylabel("dominance", fontsize="large", labelpad=0) | |
| ax.set_zlabel("valence", fontsize="large", labelpad=0) | |
| ax.set_xticks( | |
| list(range(voxels + 1)), | |
| labels=[0, None, None, None, None, None, None, 1], | |
| verticalalignment="bottom", | |
| ) | |
| ax.set_yticks( | |
| list(range(voxels + 1)), | |
| labels=[0, None, None, None, None, None, None, 1], | |
| verticalalignment="bottom", | |
| ) | |
| ax.set_zticks( | |
| list(range(voxels + 1)), | |
| labels=[0, None, None, None, None, None, None, 1], | |
| verticalalignment="top", | |
| ) | |
| description = ( | |
| "Estimate **age**, **gender**, and **expression** " | |
| "of the speaker contained in an audio file or microphone recording. \n" | |
| f"The model [{age_gender_model_name}]" | |
| f"(https://huggingface.co/{age_gender_model_name}) " | |
| "recognises age and gender, " | |
| f"whereas [{expression_model_name}]" | |
| f"(https://huggingface.co/{expression_model_name}) " | |
| "recognises the expression dimensions arousal, dominance, and valence. " | |
| ) | |
| with gr.Blocks() as demo: | |
| with gr.Tab(label="Speech analysis"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown(description) | |
| input = gr.Audio( | |
| sources=["upload", "microphone"], | |
| type="filepath", | |
| label="Audio input", | |
| min_length=0.025, # seconds | |
| ) | |
| gr.Examples( | |
| [ | |
| "female-46-neutral.wav", | |
| "female-20-happy.wav", | |
| "male-60-angry.wav", | |
| "male-27-sad.wav", | |
| ], | |
| [input], | |
| label="Examples from CREMA-D, ODbL v1.0 license", | |
| ) | |
| gr.Markdown("Only the first second of the audio is processed.") | |
| submit_btn = gr.Button(value="Submit") | |
| with gr.Column(): | |
| output_age = gr.Textbox(label="Age") | |
| output_gender = gr.Label(label="Gender") | |
| output_expression = gr.Image(label="Expression") | |
| outputs = [output_age, output_gender, output_expression] | |
| submit_btn.click(recognize, input, outputs) | |
| demo.launch(debug=True) | |