Spaces:
Sleeping
Sleeping
Upload model_wav2vec.py
Browse files- models/model_wav2vec.py +48 -0
models/model_wav2vec.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from transformers import Wav2Vec2Model
|
| 5 |
+
|
| 6 |
+
class Wav2VecIntent(nn.Module):
|
| 7 |
+
def __init__(self, num_classes=31, pretrained_model="facebook/wav2vec2-large"):
|
| 8 |
+
super().__init__()
|
| 9 |
+
# Load pretrained wav2vec model
|
| 10 |
+
self.wav2vec = Wav2Vec2Model.from_pretrained(pretrained_model)
|
| 11 |
+
|
| 12 |
+
# Get hidden size from model config
|
| 13 |
+
hidden_size = self.wav2vec.config.hidden_size
|
| 14 |
+
|
| 15 |
+
# Add layer normalization
|
| 16 |
+
self.layer_norm = nn.LayerNorm(hidden_size)
|
| 17 |
+
|
| 18 |
+
# Add attention mechanism
|
| 19 |
+
self.attention = nn.Linear(hidden_size, 1)
|
| 20 |
+
|
| 21 |
+
# Add dropout for regularization
|
| 22 |
+
self.dropout = nn.Dropout(p=0.5)
|
| 23 |
+
|
| 24 |
+
# Classification head
|
| 25 |
+
self.fc = nn.Linear(hidden_size, num_classes)
|
| 26 |
+
|
| 27 |
+
def forward(self, input_values, attention_mask=None):
|
| 28 |
+
# Get wav2vec features
|
| 29 |
+
outputs = self.wav2vec(
|
| 30 |
+
input_values,
|
| 31 |
+
attention_mask=attention_mask,
|
| 32 |
+
return_dict=True
|
| 33 |
+
)
|
| 34 |
+
hidden_states = outputs.last_hidden_state # [batch, sequence, hidden]
|
| 35 |
+
|
| 36 |
+
# Apply layer normalization
|
| 37 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 38 |
+
|
| 39 |
+
# Apply attention
|
| 40 |
+
attn_weights = F.softmax(self.attention(hidden_states), dim=1)
|
| 41 |
+
x = torch.sum(hidden_states * attn_weights, dim=1) # Weighted sum
|
| 42 |
+
|
| 43 |
+
# Apply dropout
|
| 44 |
+
x = self.dropout(x)
|
| 45 |
+
|
| 46 |
+
# Final classification
|
| 47 |
+
x = self.fc(x)
|
| 48 |
+
return x
|