Spaces:
Running
Running
| import gradio as gr | |
| import random | |
| from datetime import datetime | |
| import tempfile | |
| import os | |
| import edge_tts | |
| import asyncio | |
| import warnings | |
| import pytz | |
| import re | |
| import json | |
| import pandas as pd | |
| from pathlib import Path | |
| from gradio_client import Client | |
| warnings.filterwarnings('ignore') | |
| # Initialize story starters with added comedy section | |
| STORY_STARTERS = [ | |
| ['Adventure', 'In a hidden temple deep in the Amazon...'], | |
| ['Mystery', 'The detective found an unusual note...'], | |
| ['Romance', 'Two strangers meet on a rainy evening...'], | |
| ['Sci-Fi', 'The space station received an unexpected signal...'], | |
| ['Fantasy', 'A magical portal appeared in the garden...'], | |
| ['Comedy-Sitcom', 'The new roommate arrived with seven emotional support animals...'], | |
| ['Comedy-Workplace', 'The office printer started sending mysterious messages...'], | |
| ['Comedy-Family', 'Grandma decided to become a social media influencer...'], | |
| ['Comedy-Supernatural', 'The ghost haunting the house was absolutely terrible at scaring people...'], | |
| ['Comedy-Travel', 'The GPS insisted on giving directions in interpretive dance descriptions...'] | |
| ] | |
| # Initialize client outside of interface definition | |
| arxiv_client = None | |
| def init_client(): | |
| global arxiv_client | |
| if arxiv_client is None: | |
| arxiv_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
| return arxiv_client | |
| def save_story(story, audio_path): | |
| """Save story and audio to gallery with markdown formatting""" | |
| try: | |
| # Create gallery directory if it doesn't exist | |
| gallery_dir = Path("gallery") | |
| gallery_dir.mkdir(exist_ok=True) | |
| # Generate timestamp and sanitize first line for filename | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| first_line = story.split('\n')[0].strip() | |
| safe_name = re.sub(r'[^\w\s-]', '', first_line)[:50] # First 50 chars, sanitized | |
| # Save story text as markdown | |
| story_path = gallery_dir / f"story_{timestamp}_{safe_name}.md" | |
| with open(story_path, "w") as f: | |
| f.write(f"# {first_line}\n\n{story}") | |
| # Copy audio file to gallery with matching name | |
| new_audio_path = None | |
| if audio_path: | |
| new_audio_path = gallery_dir / f"audio_{timestamp}_{safe_name}.mp3" | |
| os.system(f"cp {audio_path} {str(new_audio_path)}") | |
| return str(story_path), str(new_audio_path) if new_audio_path else None | |
| except Exception as e: | |
| print(f"Error saving to gallery: {str(e)}") | |
| return None, None | |
| def load_gallery(): | |
| """Load all stories and audio from gallery with markdown support""" | |
| try: | |
| gallery_dir = Path("gallery") | |
| if not gallery_dir.exists(): | |
| return [] | |
| files = [] | |
| for story_file in sorted(gallery_dir.glob("story_*.md"), reverse=True): | |
| # Extract timestamp and name from filename | |
| parts = story_file.stem.split('_', 2) | |
| timestamp = f"{parts[1]}" | |
| # Find matching audio file | |
| audio_pattern = f"audio_{timestamp}_*.mp3" | |
| audio_files = list(gallery_dir.glob(audio_pattern)) | |
| audio_file = audio_files[0] if audio_files else None | |
| # Read story content and get preview | |
| with open(story_file) as f: | |
| content = f.read() | |
| # Skip markdown header and get preview | |
| preview = content.split('\n\n', 1)[1][:100] + "..." | |
| files.append([ | |
| timestamp, | |
| f"[{preview}]({str(story_file)})", # Markdown link to story | |
| str(story_file), | |
| str(audio_file) if audio_file else None | |
| ]) | |
| return files | |
| except Exception as e: | |
| print(f"Error loading gallery: {str(e)}") | |
| return [] | |
| # Keep all other functions unchanged | |
| def generate_story(prompt, model_choice): | |
| """Generate story using specified model""" | |
| try: | |
| client = init_client() | |
| if client is None: | |
| return "Error: Story generation service is not available." | |
| result = client.predict( | |
| prompt=prompt, | |
| llm_model_picked=model_choice, | |
| stream_outputs=True, | |
| api_name="/ask_llm" | |
| ) | |
| return result | |
| except Exception as e: | |
| return f"Error generating story: {str(e)}" | |
| async def generate_speech(text, voice="en-US-AriaNeural"): | |
| """Generate speech from text""" | |
| try: | |
| communicate = edge_tts.Communicate(text, voice) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: | |
| tmp_path = tmp_file.name | |
| await communicate.save(tmp_path) | |
| return tmp_path | |
| except Exception as e: | |
| print(f"Error in text2speech: {str(e)}") | |
| return None | |
| def process_story_and_audio(prompt, model_choice): | |
| """Process story, generate audio, and save to gallery""" | |
| try: | |
| # Generate story | |
| story = generate_story(prompt, model_choice) | |
| if isinstance(story, str) and story.startswith("Error"): | |
| return story, None, None | |
| # Generate audio | |
| audio_path = asyncio.run(generate_speech(story)) | |
| # Save to gallery | |
| story_path, saved_audio_path = save_story(story, audio_path) | |
| return story, audio_path, load_gallery() | |
| except Exception as e: | |
| return f"Error: {str(e)}", None, None | |
| def play_gallery_audio(evt: gr.SelectData, gallery_data): | |
| """Play audio from gallery selection""" | |
| try: | |
| selected_row = gallery_data[evt.index[0]] | |
| audio_path = selected_row[3] # Audio path is the fourth element | |
| if audio_path and os.path.exists(audio_path): | |
| return audio_path | |
| return None | |
| except Exception as e: | |
| print(f"Error playing gallery audio: {str(e)}") | |
| return None | |
| # Create the Gradio interface (keep unchanged) | |
| with gr.Blocks(title="AI Story Generator") as demo: | |
| gr.Markdown(""" | |
| # π AI Story Generator & Narrator | |
| Generate creative stories, listen to them, and build your gallery! | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| with gr.Row(): | |
| prompt_input = gr.Textbox( | |
| label="Story Concept", | |
| placeholder="Enter your story idea...", | |
| lines=3 | |
| ) | |
| with gr.Row(): | |
| model_choice = gr.Dropdown( | |
| label="Model", | |
| choices=[ | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| "mistralai/Mistral-7B-Instruct-v0.2" | |
| ], | |
| value="mistralai/Mixtral-8x7B-Instruct-v0.1" | |
| ) | |
| generate_btn = gr.Button("Generate Story") | |
| with gr.Row(): | |
| story_output = gr.Textbox( | |
| label="Generated Story", | |
| lines=10, | |
| interactive=False | |
| ) | |
| with gr.Row(): | |
| audio_output = gr.Audio( | |
| label="Story Narration", | |
| type="filepath" | |
| ) | |
| # Sidebar with Story Starters and Gallery | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π Story Starters") | |
| story_starters = gr.Dataframe( | |
| value=STORY_STARTERS, | |
| headers=["Category", "Starter"], | |
| interactive=False | |
| ) | |
| gr.Markdown("### π¬ Gallery") | |
| gallery = gr.Dataframe( | |
| value=load_gallery(), | |
| headers=["Timestamp", "Preview", "Story Path", "Audio Path"], | |
| interactive=False | |
| ) | |
| # Event handlers | |
| def update_prompt(evt: gr.SelectData): | |
| return STORY_STARTERS[evt.index[0]][1] | |
| story_starters.select(update_prompt, None, prompt_input) | |
| generate_btn.click( | |
| fn=process_story_and_audio, | |
| inputs=[prompt_input, model_choice], | |
| outputs=[story_output, audio_output, gallery] | |
| ) | |
| gallery.select( | |
| fn=play_gallery_audio, | |
| inputs=[gallery], | |
| outputs=[audio_output] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |