Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import random
|
| 3 |
-
import time
|
| 4 |
from datetime import datetime
|
| 5 |
import tempfile
|
| 6 |
import os
|
|
@@ -8,42 +7,34 @@ import edge_tts
|
|
| 8 |
import asyncio
|
| 9 |
import warnings
|
| 10 |
from gradio_client import Client
|
| 11 |
-
import json
|
| 12 |
import pytz
|
| 13 |
import re
|
|
|
|
| 14 |
|
| 15 |
warnings.filterwarnings('ignore')
|
| 16 |
|
| 17 |
-
# Initialize
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
try:
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
except Exception as e:
|
| 23 |
-
|
| 24 |
-
return None
|
| 25 |
-
|
| 26 |
-
if "client" not in locals():
|
| 27 |
-
CLIENT = initialize_clients()
|
| 28 |
-
|
| 29 |
-
# Helper function to generate a filename
|
| 30 |
-
def gen_AI_IO_filename(display_query, output):
|
| 31 |
-
now_central = datetime.now(pytz.timezone("America/Chicago"))
|
| 32 |
-
timestamp = now_central.strftime("%Y-%m-%d-%I-%M-%S-%f-%p")
|
| 33 |
-
display_query = display_query[:50]
|
| 34 |
-
output_snippet = re.sub(r'[^A-Za-z0-9]+', '_', output[:100])
|
| 35 |
-
filename = f"{timestamp} - {display_query} - {output_snippet}.md"
|
| 36 |
-
return filename
|
| 37 |
-
|
| 38 |
-
def create_file(filename, prompt, response, should_save=True):
|
| 39 |
-
"""Create and save a file with prompt and response"""
|
| 40 |
-
if not should_save:
|
| 41 |
-
return
|
| 42 |
-
with open(filename, 'w', encoding='utf-8') as file:
|
| 43 |
-
file.write(f"Prompt:\n{prompt}\n\nResponse:\n{response}")
|
| 44 |
|
| 45 |
async def generate_speech(text, voice="en-US-AriaNeural"):
|
| 46 |
-
"""Generate speech from text
|
| 47 |
try:
|
| 48 |
communicate = edge_tts.Communicate(text, voice)
|
| 49 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
|
@@ -54,155 +45,72 @@ async def generate_speech(text, voice="en-US-AriaNeural"):
|
|
| 54 |
print(f"Error in text2speech: {str(e)}")
|
| 55 |
return None
|
| 56 |
|
| 57 |
-
def
|
| 58 |
-
"""
|
| 59 |
-
try:
|
| 60 |
-
if CLIENT is None:
|
| 61 |
-
return "Error: Story generation service is not available."
|
| 62 |
-
|
| 63 |
-
# First pass: Generate initial story with chosen model
|
| 64 |
-
initial_result = CLIENT.predict(
|
| 65 |
-
prompt=prompt,
|
| 66 |
-
llm_model_picked=model_choice,
|
| 67 |
-
stream_outputs=True,
|
| 68 |
-
api_name="/ask_llm"
|
| 69 |
-
)
|
| 70 |
-
|
| 71 |
-
# Second pass: Enhance with RAG pattern
|
| 72 |
-
enhanced_result = CLIENT.predict(
|
| 73 |
-
message=prompt,
|
| 74 |
-
llm_results_use=10,
|
| 75 |
-
database_choice="Semantic Search",
|
| 76 |
-
llm_model_picked=model_choice,
|
| 77 |
-
api_name="/update_with_rag_md"
|
| 78 |
-
)
|
| 79 |
-
|
| 80 |
-
# Combine results and save
|
| 81 |
-
story = initial_result + "\n\nEnhanced version:\n" + enhanced_result[0]
|
| 82 |
-
|
| 83 |
-
# Save outputs
|
| 84 |
-
filename = gen_AI_IO_filename("Story", initial_result)
|
| 85 |
-
create_file(filename, prompt, initial_result)
|
| 86 |
-
|
| 87 |
-
filename = gen_AI_IO_filename("Enhanced", enhanced_result[0])
|
| 88 |
-
create_file(filename, prompt, enhanced_result[0])
|
| 89 |
-
|
| 90 |
-
return story
|
| 91 |
-
except Exception as e:
|
| 92 |
-
return f"Error generating story: {str(e)}"
|
| 93 |
-
|
| 94 |
-
def story_generator_interface(prompt, genre, structure, model_choice, num_scenes, words_per_scene):
|
| 95 |
-
"""Main story generation and audio creation function"""
|
| 96 |
try:
|
| 97 |
-
# Create storytelling prompt
|
| 98 |
-
story_prompt = f"""Create a {genre} story following this structure: {structure}
|
| 99 |
-
Base concept: {prompt}
|
| 100 |
-
Make it engaging and suitable for narration.
|
| 101 |
-
Include vivid descriptions and sensory details.
|
| 102 |
-
Use approximately {words_per_scene} words per scene.
|
| 103 |
-
Create {num_scenes} distinct scenes."""
|
| 104 |
-
|
| 105 |
# Generate story
|
| 106 |
-
story = generate_story(
|
| 107 |
if story.startswith("Error"):
|
| 108 |
return story, None
|
| 109 |
-
|
| 110 |
-
# Generate
|
| 111 |
audio_path = asyncio.run(generate_speech(story))
|
| 112 |
|
| 113 |
return story, audio_path
|
| 114 |
-
|
| 115 |
except Exception as e:
|
| 116 |
-
|
| 117 |
-
return error_msg, None
|
| 118 |
|
| 119 |
-
#
|
| 120 |
-
|
| 121 |
-
gr.
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
with gr.
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
"
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
value="Fantasy"
|
| 146 |
-
)
|
| 147 |
-
structure_input = gr.Dropdown(
|
| 148 |
-
label="Story Structure",
|
| 149 |
-
choices=[
|
| 150 |
-
"Three Act (Setup -> Confrontation -> Resolution)",
|
| 151 |
-
"Hero's Journey (Call -> Adventure -> Return)",
|
| 152 |
-
"Five Act (Exposition -> Rising Action -> Climax -> Falling Action -> Resolution)"
|
| 153 |
-
],
|
| 154 |
-
value="Three Act (Setup -> Confrontation -> Resolution)"
|
| 155 |
-
)
|
| 156 |
-
model_choice = gr.Dropdown(
|
| 157 |
-
label="Model",
|
| 158 |
-
choices=[
|
| 159 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 160 |
-
"mistralai/Mistral-7B-Instruct-v0.2"
|
| 161 |
-
],
|
| 162 |
-
value="mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 163 |
-
)
|
| 164 |
-
num_scenes = gr.Slider(
|
| 165 |
-
label="Number of Scenes",
|
| 166 |
-
minimum=3,
|
| 167 |
-
maximum=7,
|
| 168 |
-
value=5,
|
| 169 |
-
step=1
|
| 170 |
-
)
|
| 171 |
-
words_per_scene = gr.Slider(
|
| 172 |
-
label="Words per Scene",
|
| 173 |
-
minimum=20,
|
| 174 |
-
maximum=100,
|
| 175 |
-
value=50,
|
| 176 |
-
step=10
|
| 177 |
-
)
|
| 178 |
-
generate_btn = gr.Button("Generate Story")
|
| 179 |
-
|
| 180 |
-
with gr.Row():
|
| 181 |
-
with gr.Column():
|
| 182 |
story_output = gr.Textbox(
|
| 183 |
label="Generated Story",
|
| 184 |
lines=10,
|
| 185 |
interactive=False
|
| 186 |
)
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
)
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
outputs=[
|
| 205 |
-
story_output,
|
| 206 |
-
audio_output
|
| 207 |
-
]
|
| 208 |
-
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import random
|
|
|
|
| 3 |
from datetime import datetime
|
| 4 |
import tempfile
|
| 5 |
import os
|
|
|
|
| 7 |
import asyncio
|
| 8 |
import warnings
|
| 9 |
from gradio_client import Client
|
|
|
|
| 10 |
import pytz
|
| 11 |
import re
|
| 12 |
+
import json
|
| 13 |
|
| 14 |
warnings.filterwarnings('ignore')
|
| 15 |
|
| 16 |
+
# Initialize client outside of reload block
|
| 17 |
+
if gr.NO_RELOAD:
|
| 18 |
+
ARXIV_CLIENT = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
| 19 |
+
|
| 20 |
+
def generate_story(prompt, model_choice):
|
| 21 |
+
"""Generate story using specified model"""
|
| 22 |
try:
|
| 23 |
+
if ARXIV_CLIENT is None:
|
| 24 |
+
return "Error: Story generation service is not available."
|
| 25 |
+
|
| 26 |
+
result = ARXIV_CLIENT.predict(
|
| 27 |
+
prompt=prompt,
|
| 28 |
+
llm_model_picked=model_choice,
|
| 29 |
+
stream_outputs=True,
|
| 30 |
+
api_name="/ask_llm"
|
| 31 |
+
)
|
| 32 |
+
return result
|
| 33 |
except Exception as e:
|
| 34 |
+
return f"Error generating story: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
async def generate_speech(text, voice="en-US-AriaNeural"):
|
| 37 |
+
"""Generate speech from text"""
|
| 38 |
try:
|
| 39 |
communicate = edge_tts.Communicate(text, voice)
|
| 40 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
|
|
|
| 45 |
print(f"Error in text2speech: {str(e)}")
|
| 46 |
return None
|
| 47 |
|
| 48 |
+
def process_story_and_audio(prompt, model_choice):
|
| 49 |
+
"""Process story and generate audio"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# Generate story
|
| 52 |
+
story = generate_story(prompt, model_choice)
|
| 53 |
if story.startswith("Error"):
|
| 54 |
return story, None
|
| 55 |
+
|
| 56 |
+
# Generate audio
|
| 57 |
audio_path = asyncio.run(generate_speech(story))
|
| 58 |
|
| 59 |
return story, audio_path
|
|
|
|
| 60 |
except Exception as e:
|
| 61 |
+
return f"Error: {str(e)}", None
|
|
|
|
| 62 |
|
| 63 |
+
# Define the Gradio interface
|
| 64 |
+
def create_app():
|
| 65 |
+
with gr.Blocks(title="AI Story Generator") as demo:
|
| 66 |
+
gr.Markdown("""
|
| 67 |
+
# 🎭 AI Story Generator & Narrator
|
| 68 |
+
Generate creative stories and listen to them!
|
| 69 |
+
""")
|
| 70 |
+
|
| 71 |
+
with gr.Row():
|
| 72 |
+
with gr.Column():
|
| 73 |
+
prompt_input = gr.Textbox(
|
| 74 |
+
label="Story Concept",
|
| 75 |
+
placeholder="Enter your story idea...",
|
| 76 |
+
lines=3
|
| 77 |
+
)
|
| 78 |
+
model_choice = gr.Dropdown(
|
| 79 |
+
label="Model",
|
| 80 |
+
choices=[
|
| 81 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 82 |
+
"mistralai/Mistral-7B-Instruct-v0.2"
|
| 83 |
+
],
|
| 84 |
+
value="mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 85 |
+
)
|
| 86 |
+
generate_btn = gr.Button("Generate Story")
|
| 87 |
+
|
| 88 |
+
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
story_output = gr.Textbox(
|
| 90 |
label="Generated Story",
|
| 91 |
lines=10,
|
| 92 |
interactive=False
|
| 93 |
)
|
| 94 |
+
|
| 95 |
+
with gr.Row():
|
| 96 |
+
audio_output = gr.Audio(
|
| 97 |
+
label="Story Narration",
|
| 98 |
+
type="filepath"
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
generate_btn.click(
|
| 102 |
+
fn=process_story_and_audio,
|
| 103 |
+
inputs=[prompt_input, model_choice],
|
| 104 |
+
outputs=[story_output, audio_output]
|
| 105 |
)
|
| 106 |
|
| 107 |
+
return demo
|
| 108 |
+
|
| 109 |
+
# Launch the app
|
| 110 |
+
if __name__ == "__main__":
|
| 111 |
+
demo = create_app()
|
| 112 |
+
demo.launch(
|
| 113 |
+
server_name="0.0.0.0",
|
| 114 |
+
server_port=7860,
|
| 115 |
+
share=True
|
| 116 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|