Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -149,21 +149,30 @@ def navigate_pdf_page(direction: str, state: Dict[str, Any]):
|
|
| 149 |
page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>'
|
| 150 |
return image_preview, state, page_info_html
|
| 151 |
|
| 152 |
-
def downsample_video(video_path):
|
| 153 |
vidcap = cv2.VideoCapture(video_path)
|
| 154 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 155 |
frames = []
|
| 156 |
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
|
|
|
|
| 157 |
for i in frame_indices:
|
| 158 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 159 |
success, image = vidcap.read()
|
| 160 |
if success:
|
| 161 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
pil_image = Image.fromarray(image)
|
| 163 |
frames.append(pil_image)
|
|
|
|
| 164 |
vidcap.release()
|
| 165 |
return frames
|
| 166 |
|
|
|
|
| 167 |
@spaces.GPU
|
| 168 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 169 |
max_new_tokens: int = 1024,
|
|
@@ -210,7 +219,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 210 |
time.sleep(0.01)
|
| 211 |
yield buffer, buffer
|
| 212 |
|
| 213 |
-
@spaces.GPU(duration=
|
| 214 |
def generate_video(model_name: str, text: str, video_path: str,
|
| 215 |
max_new_tokens: int = 1024,
|
| 216 |
temperature: float = 0.6,
|
|
@@ -269,75 +278,7 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 269 |
time.sleep(0.01)
|
| 270 |
yield buffer, buffer
|
| 271 |
|
| 272 |
-
|
| 273 |
-
# @spaces.GPU(duration=120)
|
| 274 |
-
# def generate_pdf(model_name: str, text: str, state: Dict[str, Any],
|
| 275 |
-
# max_new_tokens: int = 2048,
|
| 276 |
-
# temperature: float = 0.6,
|
| 277 |
-
# top_p: float = 0.9,
|
| 278 |
-
# top_k: int = 50,
|
| 279 |
-
# repetition_penalty: float = 1.2):
|
| 280 |
-
|
| 281 |
-
# # if model_name == "Qwen2.5-VL-7B-Instruct":
|
| 282 |
-
# # processor, model = processor_m, model_m
|
| 283 |
-
# # elif model_name == "Qwen2.5-VL-3B-Instruct":
|
| 284 |
-
# # processor, model = processor_x, model_x
|
| 285 |
-
# if model_name == "Qwen3-VL-4B-Instruct":
|
| 286 |
-
# processor, model = processor_q, model_q
|
| 287 |
-
# elif model_name == "Qwen3-VL-8B-Instruct":
|
| 288 |
-
# processor, model = processor_y, model_y
|
| 289 |
-
# # elif model_name == "Qwen3-VL-8B-Thinking":
|
| 290 |
-
# # processor, model = processor_z, model_z
|
| 291 |
-
# elif model_name == "Qwen3-VL-4B-Thinking":
|
| 292 |
-
# processor, model = processor_t, model_t
|
| 293 |
-
# elif model_name == "Qwen3-VL-2B-Instruct":
|
| 294 |
-
# processor, model = processor_l, model_l
|
| 295 |
-
# elif model_name == "Qwen3-VL-2B-Thinking":
|
| 296 |
-
# processor, model = processor_j, model_j
|
| 297 |
-
# else:
|
| 298 |
-
# yield "Invalid model selected.", "Invalid model selected."
|
| 299 |
-
# return
|
| 300 |
-
|
| 301 |
-
# if not state or not state["pages"]:
|
| 302 |
-
# yield "Please upload a PDF file first.", "Please upload a PDF file first."
|
| 303 |
-
# return
|
| 304 |
-
|
| 305 |
-
# page_images = state["pages"]
|
| 306 |
-
# full_response = ""
|
| 307 |
-
# for i, image in enumerate(page_images):
|
| 308 |
-
# page_header = f"--- Page {i+1}/{len(page_images)} ---\n"
|
| 309 |
-
# yield full_response + page_header, full_response + page_header
|
| 310 |
-
|
| 311 |
-
# messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
|
| 312 |
-
# # Sử dụng processor đã chọn
|
| 313 |
-
# prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 314 |
-
# inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
|
| 315 |
-
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 316 |
-
|
| 317 |
-
# generation_kwargs = {
|
| 318 |
-
# **inputs,
|
| 319 |
-
# "streamer": streamer,
|
| 320 |
-
# "max_new_tokens": max_new_tokens,
|
| 321 |
-
# "do_sample": True,
|
| 322 |
-
# "temperature": temperature,
|
| 323 |
-
# "top_p": top_p,
|
| 324 |
-
# "top_k": top_k,
|
| 325 |
-
# "repetition_penalty": repetition_penalty
|
| 326 |
-
# }
|
| 327 |
-
|
| 328 |
-
# # Sử dụng model đã chọn
|
| 329 |
-
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 330 |
-
# thread.start()
|
| 331 |
-
|
| 332 |
-
# page_buffer = ""
|
| 333 |
-
# for new_text in streamer:
|
| 334 |
-
# page_buffer += new_text
|
| 335 |
-
# yield full_response + page_header + page_buffer, full_response + page_header + page_buffer
|
| 336 |
-
# time.sleep(0.01)
|
| 337 |
-
|
| 338 |
-
# full_response += page_header + page_buffer + "\n\n"
|
| 339 |
-
|
| 340 |
-
@spaces.GPU(duration=120)
|
| 341 |
def generate_pdf(model_name: str, text: str, state: Dict[str, Any],
|
| 342 |
max_new_tokens: int = 2048,
|
| 343 |
temperature: float = 0.6,
|
|
|
|
| 149 |
page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>'
|
| 150 |
return image_preview, state, page_info_html
|
| 151 |
|
| 152 |
+
def downsample_video(video_path, max_dim=720):
|
| 153 |
vidcap = cv2.VideoCapture(video_path)
|
| 154 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 155 |
frames = []
|
| 156 |
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
|
| 157 |
+
|
| 158 |
for i in frame_indices:
|
| 159 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 160 |
success, image = vidcap.read()
|
| 161 |
if success:
|
| 162 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 163 |
+
|
| 164 |
+
h, w = image.shape[:2]
|
| 165 |
+
scale = max_dim / max(h, w)
|
| 166 |
+
if scale < 1:
|
| 167 |
+
image = cv2.resize(image, (int(w*scale), int(h*scale)), interpolation=cv2.INTER_AREA)
|
| 168 |
+
|
| 169 |
pil_image = Image.fromarray(image)
|
| 170 |
frames.append(pil_image)
|
| 171 |
+
|
| 172 |
vidcap.release()
|
| 173 |
return frames
|
| 174 |
|
| 175 |
+
|
| 176 |
@spaces.GPU
|
| 177 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 178 |
max_new_tokens: int = 1024,
|
|
|
|
| 219 |
time.sleep(0.01)
|
| 220 |
yield buffer, buffer
|
| 221 |
|
| 222 |
+
@spaces.GPU(duration=180)
|
| 223 |
def generate_video(model_name: str, text: str, video_path: str,
|
| 224 |
max_new_tokens: int = 1024,
|
| 225 |
temperature: float = 0.6,
|
|
|
|
| 278 |
time.sleep(0.01)
|
| 279 |
yield buffer, buffer
|
| 280 |
|
| 281 |
+
@spaces.GPU(duration=180)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
def generate_pdf(model_name: str, text: str, state: Dict[str, Any],
|
| 283 |
max_new_tokens: int = 2048,
|
| 284 |
temperature: float = 0.6,
|