Spaces:
Running
on
Zero
Running
on
Zero
| # -------------------------------------------------------- | |
| # InternVL | |
| # Copyright (c) 2024 OpenGVLab | |
| # Licensed under The MIT License [see LICENSE for details] | |
| # -------------------------------------------------------- | |
| """ | |
| A model worker executes the model. | |
| """ | |
| import argparse | |
| import asyncio | |
| import base64 | |
| import json | |
| import os | |
| import threading | |
| import time | |
| import uuid | |
| from functools import partial | |
| from io import BytesIO | |
| from threading import Thread | |
| import requests | |
| import torch | |
| import torchvision.transforms as T | |
| import uvicorn | |
| from constants import IMAGENET_MEAN, IMAGENET_STD, WORKER_HEART_BEAT_INTERVAL | |
| from fastapi import BackgroundTasks, FastAPI, Request | |
| from fastapi.responses import StreamingResponse | |
| from PIL import Image | |
| from torchvision.transforms.functional import InterpolationMode | |
| from transformers import (AutoModelForCausalLM, AutoTokenizer, | |
| TextIteratorStreamer) | |
| from utils import build_logger, pretty_print_semaphore, server_error_msg | |
| worker_id = str(uuid.uuid4())[:6] | |
| logger = build_logger('model_worker', f'model_worker_{worker_id}.log') | |
| global_counter = 0 | |
| model_semaphore = None | |
| def load_image_from_base64(image): | |
| return Image.open(BytesIO(base64.b64decode(image))) | |
| def build_transform(input_size): | |
| MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
| transform = T.Compose([ | |
| T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
| T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize(mean=MEAN, std=STD) | |
| ]) | |
| return transform | |
| def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
| best_ratio_diff = float('inf') | |
| best_ratio = (1, 1) | |
| area = width * height | |
| for ratio in target_ratios: | |
| target_aspect_ratio = ratio[0] / ratio[1] | |
| ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
| if ratio_diff < best_ratio_diff: | |
| best_ratio_diff = ratio_diff | |
| best_ratio = ratio | |
| elif ratio_diff == best_ratio_diff: | |
| if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
| best_ratio = ratio | |
| return best_ratio | |
| def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): | |
| orig_width, orig_height = image.size | |
| aspect_ratio = orig_width / orig_height | |
| # calculate the existing image aspect ratio | |
| target_ratios = set( | |
| (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
| i * j <= max_num and i * j >= min_num) | |
| target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
| # find the closest aspect ratio to the target | |
| target_aspect_ratio = find_closest_aspect_ratio( | |
| aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
| # calculate the target width and height | |
| target_width = image_size * target_aspect_ratio[0] | |
| target_height = image_size * target_aspect_ratio[1] | |
| blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
| # resize the image | |
| resized_img = image.resize((target_width, target_height)) | |
| processed_images = [] | |
| for i in range(blocks): | |
| box = ( | |
| (i % (target_width // image_size)) * image_size, | |
| (i // (target_width // image_size)) * image_size, | |
| ((i % (target_width // image_size)) + 1) * image_size, | |
| ((i // (target_width // image_size)) + 1) * image_size | |
| ) | |
| # split the image | |
| split_img = resized_img.crop(box) | |
| processed_images.append(split_img) | |
| assert len(processed_images) == blocks | |
| if use_thumbnail and len(processed_images) != 1: | |
| thumbnail_img = image.resize((image_size, image_size)) | |
| processed_images.append(thumbnail_img) | |
| return processed_images | |
| def heart_beat_worker(controller): | |
| while True: | |
| time.sleep(WORKER_HEART_BEAT_INTERVAL) | |
| controller.send_heart_beat() | |
| class ModelWorker: | |
| def __init__(self, controller_addr, worker_addr, worker_id, model_path, model_name, | |
| load_8bit, device, context_len=8192): | |
| self.controller_addr = controller_addr | |
| self.worker_addr = worker_addr | |
| self.worker_id = worker_id | |
| if model_path.endswith('/'): | |
| model_path = model_path[:-1] | |
| if model_name is None: | |
| model_paths = model_path.split('/') | |
| if model_paths[-1].startswith('checkpoint-'): | |
| self.model_name = model_paths[-2] + '_' + model_paths[-1] | |
| else: | |
| self.model_name = model_paths[-1] | |
| else: | |
| self.model_name = model_name | |
| logger.info(f'Loading the model {self.model_name} on worker {worker_id} ...') | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) | |
| if device == 'auto': | |
| os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
| # This can make distributed deployment work properly | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| model_path, | |
| load_in_8bit=load_8bit, | |
| torch_dtype=torch.float16, | |
| device_map='auto', | |
| trust_remote_code=True).eval() | |
| else: | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| model_path, | |
| load_in_8bit=load_8bit, | |
| torch_dtype=torch.float16, | |
| trust_remote_code=True).eval() | |
| if not load_8bit and not device == 'auto': | |
| self.model = self.model.cuda() | |
| self.image_size = self.model.config.force_image_size | |
| self.context_len = context_len | |
| self.register_to_controller() | |
| self.heart_beat_thread = threading.Thread( | |
| target=heart_beat_worker, args=(self,)) | |
| self.heart_beat_thread.start() | |
| def register_to_controller(self): | |
| logger.info('Register to controller') | |
| url = self.controller_addr + '/register_worker' | |
| data = { | |
| 'worker_name': self.worker_addr, | |
| 'check_heart_beat': True, | |
| 'worker_status': self.get_status() | |
| } | |
| r = requests.post(url, json=data) | |
| assert r.status_code == 200 | |
| def send_heart_beat(self): | |
| logger.info(f'Send heart beat. Models: {[self.model_name]}. ' | |
| f'Semaphore: {pretty_print_semaphore(model_semaphore)}. ' | |
| f'global_counter: {global_counter}') | |
| url = self.controller_addr + '/receive_heart_beat' | |
| while True: | |
| try: | |
| ret = requests.post(url, json={ | |
| 'worker_name': self.worker_addr, | |
| 'queue_length': self.get_queue_length()}, timeout=5) | |
| exist = ret.json()['exist'] | |
| break | |
| except requests.exceptions.RequestException as e: | |
| logger.error(f'heart beat error: {e}') | |
| time.sleep(5) | |
| if not exist: | |
| self.register_to_controller() | |
| def get_queue_length(self): | |
| if model_semaphore is None: | |
| return 0 | |
| else: | |
| return args.limit_model_concurrency - model_semaphore._value + (len( | |
| model_semaphore._waiters) if model_semaphore._waiters is not None else 0) | |
| def get_status(self): | |
| return { | |
| 'model_names': [self.model_name], | |
| 'speed': 1, | |
| 'queue_length': self.get_queue_length(), | |
| } | |
| def generate_stream(self, params): | |
| system_message = params['prompt'][0]['content'] | |
| send_messages = params['prompt'][1:] | |
| max_input_tiles = params['max_input_tiles'] | |
| temperature = params['temperature'] | |
| top_p = params['top_p'] | |
| max_new_tokens = params['max_new_tokens'] | |
| repetition_penalty = params['repetition_penalty'] | |
| do_sample = True if temperature > 0.0 else False | |
| global_image_cnt = 1 | |
| history, pil_images, max_input_tile_list = [], [], [] | |
| for message in send_messages: | |
| if message['role'] == 'user': | |
| prefix = '' | |
| if 'image' in message: | |
| max_input_tile_temp = [] | |
| for image_str in message['image']: | |
| pil_images.append(load_image_from_base64(image_str)) | |
| prefix += f'Image-{global_image_cnt}: <image>\n\n' | |
| global_image_cnt += 1 | |
| max_input_tile_temp.append(max(1, max_input_tiles // len(message['image']))) | |
| if len(max_input_tile_temp) > 0: | |
| max_input_tile_list.append(max_input_tile_temp) | |
| content = prefix + message['content'] | |
| history.append([content, ]) | |
| else: | |
| history[-1].append(message['content']) | |
| question, history = history[-1][0], history[:-1] | |
| # Create a new list to store processed sublists | |
| flattened_list = [] | |
| # Iterate through all but the last sublist in max_input_tile_list and process them | |
| for sublist in max_input_tile_list[:-1]: | |
| processed_sublist = [1] * len(sublist) # Change each element in the sublist to 1 | |
| flattened_list.extend(processed_sublist) # Flatten the processed sublist and add to the new list | |
| # If max_input_tile_list is not empty, add the last sublist to the new list | |
| if max_input_tile_list: | |
| flattened_list.extend(max_input_tile_list[-1]) | |
| max_input_tile_list = flattened_list | |
| assert len(max_input_tile_list) == len(pil_images), 'The number of max_input_tile_list and pil_images should be the same.' | |
| logger.info(f'max_input_tile_list: {max_input_tile_list}') | |
| old_system_message = self.model.system_message | |
| self.model.system_message = system_message | |
| image_tiles = [] | |
| transform = build_transform(input_size=self.image_size) | |
| if len(pil_images) > 0: | |
| for current_max_input_tiles, pil_image in zip(max_input_tile_list, pil_images): | |
| if self.model.config.dynamic_image_size: | |
| tiles = dynamic_preprocess( | |
| pil_image, image_size=self.image_size, max_num=current_max_input_tiles, | |
| use_thumbnail=self.model.config.use_thumbnail) | |
| else: | |
| tiles = [pil_image] | |
| image_tiles += tiles | |
| pixel_values = [transform(item) for item in image_tiles] | |
| pixel_values = torch.stack(pixel_values).to(self.model.device, dtype=torch.float16) | |
| logger.info(f'Split images to {pixel_values.shape}') | |
| else: | |
| pixel_values = None | |
| streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=False, timeout=10) | |
| generation_config = dict( | |
| num_beams=1, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=do_sample, | |
| temperature=temperature, | |
| repetition_penalty=repetition_penalty, | |
| max_length=self.context_len, | |
| top_p=top_p, | |
| streamer=streamer, | |
| ) | |
| logger.info(history) | |
| logger.info(f'Generation config: {generation_config}') | |
| try: | |
| thread = Thread(target=self.model.chat, kwargs=dict( | |
| tokenizer=self.tokenizer, | |
| pixel_values=pixel_values, | |
| question=question, | |
| history=history, | |
| return_history=False, | |
| generation_config=generation_config, | |
| )) | |
| thread.start() | |
| generated_text = '' | |
| for new_text in streamer: | |
| generated_text += new_text | |
| yield json.dumps({'text': generated_text.replace(self.model.conv_template.sep, ''), | |
| 'error_code': 0}).encode() + b'\0' | |
| self.model.system_message = old_system_message | |
| except: | |
| torch.cuda.empty_cache() | |
| def generate_stream_gate(self, params): | |
| try: | |
| for x in self.generate_stream(params): | |
| yield x | |
| except ValueError as e: | |
| print('Caught ValueError:', e) | |
| ret = { | |
| 'text': server_error_msg, | |
| 'error_code': 1, | |
| } | |
| yield json.dumps(ret).encode() + b'\0' | |
| except torch.cuda.CudaError as e: | |
| print('Caught torch.cuda.CudaError:', e) | |
| ret = { | |
| 'text': server_error_msg, | |
| 'error_code': 1, | |
| } | |
| yield json.dumps(ret).encode() + b'\0' | |
| except Exception as e: | |
| print('Caught Unknown Error', e) | |
| ret = { | |
| 'text': server_error_msg, | |
| 'error_code': 1, | |
| } | |
| yield json.dumps(ret).encode() + b'\0' | |
| app = FastAPI() | |
| def release_model_semaphore(fn=None): | |
| model_semaphore.release() | |
| if fn is not None: | |
| fn() | |
| async def generate_stream(request: Request): | |
| global model_semaphore, global_counter | |
| global_counter += 1 | |
| params = await request.json() | |
| if model_semaphore is None: | |
| model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) | |
| await model_semaphore.acquire() | |
| worker.send_heart_beat() | |
| generator = worker.generate_stream_gate(params) | |
| background_tasks = BackgroundTasks() | |
| background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) | |
| return StreamingResponse(generator, background=background_tasks) | |
| async def get_status(request: Request): | |
| return worker.get_status() | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--host', type=str, default='0.0.0.0') | |
| parser.add_argument('--port', type=int, default=21002) | |
| parser.add_argument('--worker-address', type=str, default='http://localhost:21002') | |
| parser.add_argument('--controller-address', type=str, default='http://localhost:21001') | |
| parser.add_argument('--model-path', type=str, default='facebook/opt-350m') | |
| parser.add_argument('--model-name', type=str) | |
| parser.add_argument('--device', type=str, default='cuda') | |
| parser.add_argument('--limit-model-concurrency', type=int, default=5) | |
| parser.add_argument('--stream-interval', type=int, default=1) | |
| parser.add_argument('--load-8bit', action='store_true') | |
| args = parser.parse_args() | |
| logger.info(f'args: {args}') | |
| worker = ModelWorker(args.controller_address, | |
| args.worker_address, | |
| worker_id, | |
| args.model_path, | |
| args.model_name, | |
| args.load_8bit, | |
| args.device) | |
| uvicorn.run(app, host=args.host, port=args.port, log_level='info') | |