Update app.py
Browse files
app.py
CHANGED
|
@@ -9,13 +9,14 @@ def main():
|
|
| 9 |
st.set_page_config(layout="wide") # Keep the wide layout for overall flexibility
|
| 10 |
st.title("AA Property Inference Demo", anchor=None)
|
| 11 |
|
| 12 |
-
#
|
| 13 |
st.markdown("""
|
| 14 |
<style>
|
| 15 |
.reportview-container {
|
| 16 |
font-family: 'Courier New', monospace;
|
| 17 |
}
|
| 18 |
</style>
|
|
|
|
| 19 |
""", unsafe_allow_html=True)
|
| 20 |
|
| 21 |
# Input section in the sidebar
|
|
@@ -56,7 +57,11 @@ def main():
|
|
| 56 |
plot_prediction_graphs(all_data)
|
| 57 |
|
| 58 |
def plot_prediction_graphs(data):
|
| 59 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
for model_name in models.keys():
|
| 61 |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6), sharey=True)
|
| 62 |
for prediction_val in [0, 1]:
|
|
@@ -66,7 +71,8 @@ def plot_prediction_graphs(data):
|
|
| 66 |
sorted_sequences = sorted(filtered_data.items(), key=lambda x: x[1][1], reverse=True)
|
| 67 |
sequences = [x[0] for x in sorted_sequences]
|
| 68 |
conf_values = [x[1][1] for x in sorted_sequences]
|
| 69 |
-
|
|
|
|
| 70 |
ax.set_title(f'Confidence Scores for {model_name.capitalize()} (Prediction {prediction_val})')
|
| 71 |
ax.set_xlabel('Sequences')
|
| 72 |
ax.set_ylabel('Confidence')
|
|
|
|
| 9 |
st.set_page_config(layout="wide") # Keep the wide layout for overall flexibility
|
| 10 |
st.title("AA Property Inference Demo", anchor=None)
|
| 11 |
|
| 12 |
+
# Instructional text below title
|
| 13 |
st.markdown("""
|
| 14 |
<style>
|
| 15 |
.reportview-container {
|
| 16 |
font-family: 'Courier New', monospace;
|
| 17 |
}
|
| 18 |
</style>
|
| 19 |
+
<p style='font-size:16px;'><span style='font-size:24px;'>←</span> Don't know where to start? Open tab to input a sequence.</p>
|
| 20 |
""", unsafe_allow_html=True)
|
| 21 |
|
| 22 |
# Input section in the sidebar
|
|
|
|
| 57 |
plot_prediction_graphs(all_data)
|
| 58 |
|
| 59 |
def plot_prediction_graphs(data):
|
| 60 |
+
# Create a color palette that is consistent across graphs
|
| 61 |
+
unique_sequences = sorted(set(seq for seq in data))
|
| 62 |
+
palette = sns.color_palette("hsv", len(unique_sequences))
|
| 63 |
+
color_dict = {seq: color for seq, color in zip(unique_sequences, palette)}
|
| 64 |
+
|
| 65 |
for model_name in models.keys():
|
| 66 |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6), sharey=True)
|
| 67 |
for prediction_val in [0, 1]:
|
|
|
|
| 71 |
sorted_sequences = sorted(filtered_data.items(), key=lambda x: x[1][1], reverse=True)
|
| 72 |
sequences = [x[0] for x in sorted_sequences]
|
| 73 |
conf_values = [x[1][1] for x in sorted_sequences]
|
| 74 |
+
colors = [color_dict[seq] for seq in sequences]
|
| 75 |
+
sns.barplot(x=sequences, y=conf_values, palette=colors, ax=ax)
|
| 76 |
ax.set_title(f'Confidence Scores for {model_name.capitalize()} (Prediction {prediction_val})')
|
| 77 |
ax.set_xlabel('Sequences')
|
| 78 |
ax.set_ylabel('Confidence')
|