Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,80 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
| 3 |
|
| 4 |
MODEL_NAME = "basmala12/smollm_finetuning5"
|
| 5 |
|
| 6 |
-
# Load
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 8 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
|
|
|
| 9 |
|
| 10 |
-
pipe = pipeline(
|
| 11 |
-
"text-generation",
|
| 12 |
-
model=model,
|
| 13 |
-
tokenizer=tokenizer,
|
| 14 |
-
)
|
| 15 |
|
| 16 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
# Build chat
|
| 19 |
-
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
msgs.append({"role": "assistant", "content": bot_msg})
|
| 25 |
|
| 26 |
-
# Add the new user
|
| 27 |
-
|
| 28 |
|
| 29 |
-
#
|
| 30 |
prompt = tokenizer.apply_chat_template(
|
| 31 |
-
|
| 32 |
tokenize=False,
|
| 33 |
add_generation_prompt=True,
|
| 34 |
)
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
| 38 |
-
prompt,
|
| 39 |
-
max_new_tokens=max_tokens,
|
| 40 |
-
temperature=temperature,
|
| 41 |
-
top_p=top_p,
|
| 42 |
-
do_sample=True,
|
| 43 |
-
)[0]["generated_text"]
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
out = " ".join(out.split()[:45]) + " ..."
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
| 56 |
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
chatbot = gr.ChatInterface(
|
| 60 |
fn=respond,
|
| 61 |
type="messages",
|
| 62 |
additional_inputs=[
|
| 63 |
-
gr.Textbox(
|
|
|
|
|
|
|
|
|
|
| 64 |
gr.Slider(1, 512, value=256, step=1, label="Max new tokens"),
|
| 65 |
gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"),
|
| 66 |
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"),
|
| 67 |
],
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
|
| 70 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
|
| 5 |
MODEL_NAME = "basmala12/smollm_finetuning5"
|
| 6 |
|
| 7 |
+
# Load tokenizer & model once at startup (on CPU)
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 9 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 10 |
+
model.eval()
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 14 |
+
"""
|
| 15 |
+
ChatInterface (type="messages") passes:
|
| 16 |
+
- message: current user message (str)
|
| 17 |
+
- history: list of dicts: [{"role": "...", "content": "..."}, ...]
|
| 18 |
+
- system_message, max_tokens, temperature, top_p: from additional_inputs
|
| 19 |
+
We return a single string: the assistant reply.
|
| 20 |
+
"""
|
| 21 |
|
| 22 |
+
# Build full conversation for the chat template
|
| 23 |
+
messages = [{"role": "system", "content": system_message}]
|
| 24 |
|
| 25 |
+
# history is a list of {"role": "user"/"assistant", "content": str}
|
| 26 |
+
# We append it as-is to preserve previous turns
|
| 27 |
+
messages.extend(history)
|
|
|
|
| 28 |
|
| 29 |
+
# Add the new user question
|
| 30 |
+
messages.append({"role": "user", "content": message})
|
| 31 |
|
| 32 |
+
# Turn into model prompt using the tokenizer's chat template
|
| 33 |
prompt = tokenizer.apply_chat_template(
|
| 34 |
+
messages,
|
| 35 |
tokenize=False,
|
| 36 |
add_generation_prompt=True,
|
| 37 |
)
|
| 38 |
|
| 39 |
+
# Tokenize
|
| 40 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
# Generate continuation (new assistant answer only)
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
outputs = model.generate(
|
| 45 |
+
**inputs,
|
| 46 |
+
max_new_tokens=max_tokens,
|
| 47 |
+
do_sample=True,
|
| 48 |
+
temperature=float(temperature),
|
| 49 |
+
top_p=float(top_p),
|
| 50 |
+
)
|
| 51 |
|
| 52 |
+
# Slice off the prompt tokens, keep only new tokens
|
| 53 |
+
generated_tokens = outputs[0][inputs["input_ids"].shape[1]:]
|
| 54 |
+
answer = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
|
|
|
|
| 55 |
|
| 56 |
+
# Optional: enforce "short answer + brief reasoning"
|
| 57 |
+
words = answer.split()
|
| 58 |
+
if len(words) > 60:
|
| 59 |
+
answer = " ".join(words[:60]) + " ..."
|
| 60 |
|
| 61 |
+
return answer
|
| 62 |
|
| 63 |
|
| 64 |
chatbot = gr.ChatInterface(
|
| 65 |
fn=respond,
|
| 66 |
type="messages",
|
| 67 |
additional_inputs=[
|
| 68 |
+
gr.Textbox(
|
| 69 |
+
value="Give short answers with brief logical reasoning.",
|
| 70 |
+
label="System message",
|
| 71 |
+
),
|
| 72 |
gr.Slider(1, 512, value=256, step=1, label="Max new tokens"),
|
| 73 |
gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"),
|
| 74 |
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"),
|
| 75 |
],
|
| 76 |
+
title="SmolLM2 – Short Reasoning Chatbot",
|
| 77 |
+
description="Fine-tuned SmolLM2 (basmala12/smollm_finetuning5) that gives short answers with brief logical reasoning.",
|
| 78 |
)
|
| 79 |
|
| 80 |
if __name__ == "__main__":
|