Spaces:
Running
on
Zero
Running
on
Zero
PseudoTerminal X
commited on
Create pipeline.py
Browse files- pipeline.py +1299 -0
pipeline.py
ADDED
|
@@ -0,0 +1,1299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import html
|
| 16 |
+
import inspect
|
| 17 |
+
import re
|
| 18 |
+
import urllib.parse as ul
|
| 19 |
+
from typing import Callable, List, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
| 23 |
+
|
| 24 |
+
from diffusers.image_processor import PixArtImageProcessor, PipelineImageInput
|
| 25 |
+
from diffusers.models import AutoencoderKL, PixArtTransformer2DModel
|
| 26 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 27 |
+
from diffusers.utils import (
|
| 28 |
+
BACKENDS_MAPPING,
|
| 29 |
+
deprecate,
|
| 30 |
+
is_bs4_available,
|
| 31 |
+
is_ftfy_available,
|
| 32 |
+
logging,
|
| 33 |
+
replace_example_docstring,
|
| 34 |
+
)
|
| 35 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 36 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
| 37 |
+
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import (
|
| 38 |
+
ASPECT_RATIO_256_BIN,
|
| 39 |
+
ASPECT_RATIO_512_BIN,
|
| 40 |
+
ASPECT_RATIO_1024_BIN,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
| 45 |
+
def retrieve_latents(
|
| 46 |
+
encoder_output: torch.Tensor,
|
| 47 |
+
generator: Optional[torch.Generator] = None,
|
| 48 |
+
sample_mode: str = "sample",
|
| 49 |
+
):
|
| 50 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
| 51 |
+
return encoder_output.latent_dist.sample(generator)
|
| 52 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
| 53 |
+
return encoder_output.latent_dist.mode()
|
| 54 |
+
elif hasattr(encoder_output, "latents"):
|
| 55 |
+
return encoder_output.latents
|
| 56 |
+
else:
|
| 57 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 61 |
+
|
| 62 |
+
if is_bs4_available():
|
| 63 |
+
from bs4 import BeautifulSoup
|
| 64 |
+
|
| 65 |
+
if is_ftfy_available():
|
| 66 |
+
import ftfy
|
| 67 |
+
|
| 68 |
+
def debug_print(message: str):
|
| 69 |
+
#print(message)
|
| 70 |
+
pass
|
| 71 |
+
|
| 72 |
+
ASPECT_RATIO_2048_BIN = {
|
| 73 |
+
"0.25": [1024.0, 4096.0],
|
| 74 |
+
"0.26": [1024.0, 3968.0],
|
| 75 |
+
"0.27": [1024.0, 3840.0],
|
| 76 |
+
"0.28": [1024.0, 3712.0],
|
| 77 |
+
"0.32": [1152.0, 3584.0],
|
| 78 |
+
"0.33": [1152.0, 3456.0],
|
| 79 |
+
"0.35": [1152.0, 3328.0],
|
| 80 |
+
"0.4": [1280.0, 3200.0],
|
| 81 |
+
"0.42": [1280.0, 3072.0],
|
| 82 |
+
"0.48": [1408.0, 2944.0],
|
| 83 |
+
"0.5": [1408.0, 2816.0],
|
| 84 |
+
"0.52": [1408.0, 2688.0],
|
| 85 |
+
"0.57": [1536.0, 2688.0],
|
| 86 |
+
"0.6": [1536.0, 2560.0],
|
| 87 |
+
"0.68": [1664.0, 2432.0],
|
| 88 |
+
"0.72": [1664.0, 2304.0],
|
| 89 |
+
"0.78": [1792.0, 2304.0],
|
| 90 |
+
"0.82": [1792.0, 2176.0],
|
| 91 |
+
"0.88": [1920.0, 2176.0],
|
| 92 |
+
"0.94": [1920.0, 2048.0],
|
| 93 |
+
"1.0": [2048.0, 2048.0],
|
| 94 |
+
"1.07": [2048.0, 1920.0],
|
| 95 |
+
"1.13": [2176.0, 1920.0],
|
| 96 |
+
"1.21": [2176.0, 1792.0],
|
| 97 |
+
"1.29": [2304.0, 1792.0],
|
| 98 |
+
"1.38": [2304.0, 1664.0],
|
| 99 |
+
"1.46": [2432.0, 1664.0],
|
| 100 |
+
"1.67": [2560.0, 1536.0],
|
| 101 |
+
"1.75": [2688.0, 1536.0],
|
| 102 |
+
"2.0": [2816.0, 1408.0],
|
| 103 |
+
"2.09": [2944.0, 1408.0],
|
| 104 |
+
"2.4": [3072.0, 1280.0],
|
| 105 |
+
"2.5": [3200.0, 1280.0],
|
| 106 |
+
"2.89": [3328.0, 1152.0],
|
| 107 |
+
"3.0": [3456.0, 1152.0],
|
| 108 |
+
"3.11": [3584.0, 1152.0],
|
| 109 |
+
"3.62": [3712.0, 1024.0],
|
| 110 |
+
"3.75": [3840.0, 1024.0],
|
| 111 |
+
"3.88": [3968.0, 1024.0],
|
| 112 |
+
"4.0": [4096.0, 1024.0],
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
EXAMPLE_DOC_STRING = """
|
| 117 |
+
Examples:
|
| 118 |
+
```py
|
| 119 |
+
>>> import torch
|
| 120 |
+
>>> from diffusers import PixArtSigmaPipeline
|
| 121 |
+
|
| 122 |
+
>>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" too.
|
| 123 |
+
>>> pipe = PixArtSigmaPipeline.from_pretrained(
|
| 124 |
+
... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16
|
| 125 |
+
... )
|
| 126 |
+
>>> # Enable memory optimizations.
|
| 127 |
+
>>> # pipe.enable_model_cpu_offload()
|
| 128 |
+
|
| 129 |
+
>>> prompt = "A small cactus with a happy face in the Sahara desert."
|
| 130 |
+
>>> image = pipe(prompt).images[0]
|
| 131 |
+
```
|
| 132 |
+
"""
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 136 |
+
def retrieve_timesteps(
|
| 137 |
+
scheduler,
|
| 138 |
+
num_inference_steps: Optional[int] = None,
|
| 139 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 140 |
+
timesteps: Optional[List[int]] = None,
|
| 141 |
+
sigmas: Optional[List[float]] = None,
|
| 142 |
+
**kwargs,
|
| 143 |
+
):
|
| 144 |
+
"""
|
| 145 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 146 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 147 |
+
|
| 148 |
+
Args:
|
| 149 |
+
scheduler (`SchedulerMixin`):
|
| 150 |
+
The scheduler to get timesteps from.
|
| 151 |
+
num_inference_steps (`int`):
|
| 152 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 153 |
+
must be `None`.
|
| 154 |
+
device (`str` or `torch.device`, *optional*):
|
| 155 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 156 |
+
timesteps (`List[int]`, *optional*):
|
| 157 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 158 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 159 |
+
sigmas (`List[float]`, *optional*):
|
| 160 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 161 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 162 |
+
|
| 163 |
+
Returns:
|
| 164 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 165 |
+
second element is the number of inference steps.
|
| 166 |
+
"""
|
| 167 |
+
if timesteps is not None and sigmas is not None:
|
| 168 |
+
raise ValueError(
|
| 169 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
| 170 |
+
)
|
| 171 |
+
if timesteps is not None:
|
| 172 |
+
accepts_timesteps = "timesteps" in set(
|
| 173 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 174 |
+
)
|
| 175 |
+
if not accepts_timesteps:
|
| 176 |
+
raise ValueError(
|
| 177 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 178 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 179 |
+
)
|
| 180 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 181 |
+
timesteps = scheduler.timesteps
|
| 182 |
+
num_inference_steps = len(timesteps)
|
| 183 |
+
elif sigmas is not None:
|
| 184 |
+
accept_sigmas = "sigmas" in set(
|
| 185 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 186 |
+
)
|
| 187 |
+
if not accept_sigmas:
|
| 188 |
+
raise ValueError(
|
| 189 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 190 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 191 |
+
)
|
| 192 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 193 |
+
timesteps = scheduler.timesteps
|
| 194 |
+
num_inference_steps = len(timesteps)
|
| 195 |
+
else:
|
| 196 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 197 |
+
timesteps = scheduler.timesteps
|
| 198 |
+
return timesteps, num_inference_steps
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
class PixArtSigmaPipeline(DiffusionPipeline):
|
| 202 |
+
r"""
|
| 203 |
+
Pipeline for text-to-image generation using PixArt-Sigma.
|
| 204 |
+
"""
|
| 205 |
+
|
| 206 |
+
bad_punct_regex = re.compile(
|
| 207 |
+
r"["
|
| 208 |
+
+ "#®•©™&@·º½¾¿¡§~"
|
| 209 |
+
+ r"\)"
|
| 210 |
+
+ r"\("
|
| 211 |
+
+ r"\]"
|
| 212 |
+
+ r"\["
|
| 213 |
+
+ r"\}"
|
| 214 |
+
+ r"\{"
|
| 215 |
+
+ r"\|"
|
| 216 |
+
+ "\\"
|
| 217 |
+
+ r"\/"
|
| 218 |
+
+ r"\*"
|
| 219 |
+
+ r"]{1,}"
|
| 220 |
+
) # noqa
|
| 221 |
+
|
| 222 |
+
_optional_components = ["tokenizer", "text_encoder"]
|
| 223 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
| 224 |
+
|
| 225 |
+
def __init__(
|
| 226 |
+
self,
|
| 227 |
+
tokenizer: T5Tokenizer,
|
| 228 |
+
text_encoder: T5EncoderModel,
|
| 229 |
+
vae: AutoencoderKL,
|
| 230 |
+
transformer: PixArtTransformer2DModel,
|
| 231 |
+
scheduler: KarrasDiffusionSchedulers,
|
| 232 |
+
):
|
| 233 |
+
super().__init__()
|
| 234 |
+
|
| 235 |
+
self.register_modules(
|
| 236 |
+
tokenizer=tokenizer,
|
| 237 |
+
text_encoder=text_encoder,
|
| 238 |
+
vae=vae,
|
| 239 |
+
transformer=transformer,
|
| 240 |
+
scheduler=scheduler,
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 244 |
+
self.image_processor = PixArtImageProcessor(
|
| 245 |
+
vae_scale_factor=self.vae_scale_factor
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
def get_timesteps(
|
| 249 |
+
self, num_inference_steps, strength, device, denoising_start=None
|
| 250 |
+
):
|
| 251 |
+
# get the original timestep using init_timestep
|
| 252 |
+
if denoising_start is None and strength is not None:
|
| 253 |
+
init_timestep = min(
|
| 254 |
+
int(num_inference_steps * strength), num_inference_steps
|
| 255 |
+
)
|
| 256 |
+
debug_print(f"Init timestep: {init_timestep}")
|
| 257 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
| 258 |
+
debug_print(
|
| 259 |
+
f"t_start = max({num_inference_steps} - {init_timestep}, 0) = {t_start}"
|
| 260 |
+
)
|
| 261 |
+
else:
|
| 262 |
+
debug_print(f"denoising_start: {denoising_start}")
|
| 263 |
+
t_start = 0
|
| 264 |
+
|
| 265 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
| 266 |
+
# Strength is irrelevant if we directly request a timestep to start at;
|
| 267 |
+
# that is, strength is determined by the denoising_start instead.
|
| 268 |
+
if denoising_start is not None:
|
| 269 |
+
discrete_timestep_cutoff = int(
|
| 270 |
+
round(
|
| 271 |
+
self.scheduler.config.num_train_timesteps
|
| 272 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
| 273 |
+
)
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
|
| 277 |
+
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
|
| 278 |
+
# if the scheduler is a 2nd order scheduler we might have to do +1
|
| 279 |
+
# because `num_inference_steps` might be even given that every timestep
|
| 280 |
+
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
|
| 281 |
+
# mean that we cut the timesteps in the middle of the denoising step
|
| 282 |
+
# (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
|
| 283 |
+
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
|
| 284 |
+
num_inference_steps = num_inference_steps + 1
|
| 285 |
+
|
| 286 |
+
# because t_n+1 >= t_n, we slice the timesteps starting from the end
|
| 287 |
+
timesteps = timesteps[-num_inference_steps:]
|
| 288 |
+
return timesteps, num_inference_steps
|
| 289 |
+
|
| 290 |
+
return timesteps, num_inference_steps - t_start
|
| 291 |
+
|
| 292 |
+
# Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.encode_prompt with 120->300
|
| 293 |
+
def encode_prompt(
|
| 294 |
+
self,
|
| 295 |
+
prompt: Union[str, List[str]],
|
| 296 |
+
do_classifier_free_guidance: bool = True,
|
| 297 |
+
negative_prompt: str = "",
|
| 298 |
+
num_images_per_prompt: int = 1,
|
| 299 |
+
device: Optional[torch.device] = None,
|
| 300 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 301 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 302 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
| 303 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
| 304 |
+
clean_caption: bool = False,
|
| 305 |
+
max_sequence_length: int = 300,
|
| 306 |
+
**kwargs,
|
| 307 |
+
):
|
| 308 |
+
r"""
|
| 309 |
+
Encodes the prompt into text encoder hidden states.
|
| 310 |
+
|
| 311 |
+
Args:
|
| 312 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 313 |
+
prompt to be encoded
|
| 314 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 315 |
+
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
| 316 |
+
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
| 317 |
+
PixArt-Alpha, this should be "".
|
| 318 |
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
| 319 |
+
whether to use classifier free guidance or not
|
| 320 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 321 |
+
number of images that should be generated per prompt
|
| 322 |
+
device: (`torch.device`, *optional*):
|
| 323 |
+
torch device to place the resulting embeddings on
|
| 324 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 325 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 326 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 327 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 328 |
+
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
|
| 329 |
+
string.
|
| 330 |
+
clean_caption (`bool`, defaults to `False`):
|
| 331 |
+
If `True`, the function will preprocess and clean the provided caption before encoding.
|
| 332 |
+
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
|
| 333 |
+
"""
|
| 334 |
+
|
| 335 |
+
if "mask_feature" in kwargs:
|
| 336 |
+
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
| 337 |
+
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
| 338 |
+
|
| 339 |
+
if device is None:
|
| 340 |
+
device = self._execution_device
|
| 341 |
+
|
| 342 |
+
if prompt is not None and isinstance(prompt, str):
|
| 343 |
+
batch_size = 1
|
| 344 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 345 |
+
batch_size = len(prompt)
|
| 346 |
+
else:
|
| 347 |
+
batch_size = prompt_embeds.shape[0]
|
| 348 |
+
|
| 349 |
+
# See Section 3.1. of the paper.
|
| 350 |
+
max_length = max_sequence_length
|
| 351 |
+
|
| 352 |
+
if prompt_embeds is None:
|
| 353 |
+
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
| 354 |
+
text_inputs = self.tokenizer(
|
| 355 |
+
prompt,
|
| 356 |
+
padding="max_length",
|
| 357 |
+
max_length=max_length,
|
| 358 |
+
truncation=True,
|
| 359 |
+
add_special_tokens=True,
|
| 360 |
+
return_tensors="pt",
|
| 361 |
+
)
|
| 362 |
+
text_input_ids = text_inputs.input_ids
|
| 363 |
+
untruncated_ids = self.tokenizer(
|
| 364 |
+
prompt, padding="longest", return_tensors="pt"
|
| 365 |
+
).input_ids
|
| 366 |
+
|
| 367 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
| 368 |
+
-1
|
| 369 |
+
] and not torch.equal(text_input_ids, untruncated_ids):
|
| 370 |
+
removed_text = self.tokenizer.batch_decode(
|
| 371 |
+
untruncated_ids[:, max_length - 1 : -1]
|
| 372 |
+
)
|
| 373 |
+
logger.warning(
|
| 374 |
+
"The following part of your input was truncated because T5 can only handle sequences up to"
|
| 375 |
+
f" {max_length} tokens: {removed_text}"
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
prompt_attention_mask = text_inputs.attention_mask
|
| 379 |
+
prompt_attention_mask = prompt_attention_mask.to(device)
|
| 380 |
+
|
| 381 |
+
prompt_embeds = self.text_encoder(
|
| 382 |
+
text_input_ids.to(device), attention_mask=prompt_attention_mask
|
| 383 |
+
)
|
| 384 |
+
prompt_embeds = prompt_embeds[0]
|
| 385 |
+
|
| 386 |
+
if self.text_encoder is not None:
|
| 387 |
+
dtype = self.text_encoder.dtype
|
| 388 |
+
elif self.transformer is not None:
|
| 389 |
+
dtype = self.transformer.dtype
|
| 390 |
+
else:
|
| 391 |
+
dtype = None
|
| 392 |
+
|
| 393 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 394 |
+
|
| 395 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 396 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 397 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 398 |
+
prompt_embeds = prompt_embeds.view(
|
| 399 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
| 400 |
+
)
|
| 401 |
+
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
|
| 402 |
+
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
| 403 |
+
|
| 404 |
+
# get unconditional embeddings for classifier free guidance
|
| 405 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 406 |
+
uncond_tokens = (
|
| 407 |
+
[negative_prompt] * batch_size
|
| 408 |
+
if isinstance(negative_prompt, str)
|
| 409 |
+
else negative_prompt
|
| 410 |
+
)
|
| 411 |
+
uncond_tokens = self._text_preprocessing(
|
| 412 |
+
uncond_tokens, clean_caption=clean_caption
|
| 413 |
+
)
|
| 414 |
+
max_length = prompt_embeds.shape[1]
|
| 415 |
+
uncond_input = self.tokenizer(
|
| 416 |
+
uncond_tokens,
|
| 417 |
+
padding="max_length",
|
| 418 |
+
max_length=max_length,
|
| 419 |
+
truncation=True,
|
| 420 |
+
return_attention_mask=True,
|
| 421 |
+
add_special_tokens=True,
|
| 422 |
+
return_tensors="pt",
|
| 423 |
+
)
|
| 424 |
+
negative_prompt_attention_mask = uncond_input.attention_mask
|
| 425 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
|
| 426 |
+
|
| 427 |
+
negative_prompt_embeds = self.text_encoder(
|
| 428 |
+
uncond_input.input_ids.to(device),
|
| 429 |
+
attention_mask=negative_prompt_attention_mask,
|
| 430 |
+
)
|
| 431 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
| 432 |
+
|
| 433 |
+
if do_classifier_free_guidance:
|
| 434 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 435 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 436 |
+
|
| 437 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
| 438 |
+
dtype=dtype, device=device
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
| 442 |
+
1, num_images_per_prompt, 1
|
| 443 |
+
)
|
| 444 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
| 445 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.view(
|
| 449 |
+
bs_embed, -1
|
| 450 |
+
)
|
| 451 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
|
| 452 |
+
num_images_per_prompt, 1
|
| 453 |
+
)
|
| 454 |
+
else:
|
| 455 |
+
negative_prompt_embeds = None
|
| 456 |
+
negative_prompt_attention_mask = None
|
| 457 |
+
|
| 458 |
+
return (
|
| 459 |
+
prompt_embeds,
|
| 460 |
+
prompt_attention_mask,
|
| 461 |
+
negative_prompt_embeds,
|
| 462 |
+
negative_prompt_attention_mask,
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 466 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 467 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 468 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 469 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 470 |
+
# and should be between [0, 1]
|
| 471 |
+
|
| 472 |
+
accepts_eta = "eta" in set(
|
| 473 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 474 |
+
)
|
| 475 |
+
extra_step_kwargs = {}
|
| 476 |
+
if accepts_eta:
|
| 477 |
+
extra_step_kwargs["eta"] = eta
|
| 478 |
+
|
| 479 |
+
# check if the scheduler accepts generator
|
| 480 |
+
accepts_generator = "generator" in set(
|
| 481 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 482 |
+
)
|
| 483 |
+
if accepts_generator:
|
| 484 |
+
extra_step_kwargs["generator"] = generator
|
| 485 |
+
return extra_step_kwargs
|
| 486 |
+
|
| 487 |
+
# Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.check_inputs
|
| 488 |
+
def check_inputs(
|
| 489 |
+
self,
|
| 490 |
+
prompt,
|
| 491 |
+
height,
|
| 492 |
+
width,
|
| 493 |
+
strength,
|
| 494 |
+
num_inference_steps,
|
| 495 |
+
negative_prompt,
|
| 496 |
+
callback_steps,
|
| 497 |
+
prompt_embeds=None,
|
| 498 |
+
negative_prompt_embeds=None,
|
| 499 |
+
prompt_attention_mask=None,
|
| 500 |
+
negative_prompt_attention_mask=None,
|
| 501 |
+
):
|
| 502 |
+
if strength is None:
|
| 503 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 504 |
+
raise ValueError(
|
| 505 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
| 506 |
+
)
|
| 507 |
+
else:
|
| 508 |
+
if strength < 0 or strength > 1:
|
| 509 |
+
raise ValueError(
|
| 510 |
+
f"The value of strength should in [0.0, 1.0] but is {strength}"
|
| 511 |
+
)
|
| 512 |
+
if num_inference_steps is None:
|
| 513 |
+
raise ValueError("`num_inference_steps` cannot be None.")
|
| 514 |
+
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
|
| 515 |
+
raise ValueError(
|
| 516 |
+
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
| 517 |
+
f" {type(num_inference_steps)}."
|
| 518 |
+
)
|
| 519 |
+
if (callback_steps is None) or (
|
| 520 |
+
callback_steps is not None
|
| 521 |
+
and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 522 |
+
):
|
| 523 |
+
raise ValueError(
|
| 524 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 525 |
+
f" {type(callback_steps)}."
|
| 526 |
+
)
|
| 527 |
+
|
| 528 |
+
if prompt is not None and prompt_embeds is not None:
|
| 529 |
+
prompt = None
|
| 530 |
+
|
| 531 |
+
if prompt is None and prompt_embeds is None:
|
| 532 |
+
raise ValueError(
|
| 533 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 534 |
+
)
|
| 535 |
+
elif prompt is not None and (
|
| 536 |
+
not isinstance(prompt, str) and not isinstance(prompt, list)
|
| 537 |
+
):
|
| 538 |
+
raise ValueError(
|
| 539 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
if prompt is not None and negative_prompt_embeds is not None:
|
| 543 |
+
raise ValueError(
|
| 544 |
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
| 545 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 549 |
+
negative_prompt = None
|
| 550 |
+
|
| 551 |
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
| 552 |
+
raise ValueError(
|
| 553 |
+
"Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
|
| 554 |
+
)
|
| 555 |
+
|
| 556 |
+
if (
|
| 557 |
+
negative_prompt_embeds is not None
|
| 558 |
+
and negative_prompt_attention_mask is None
|
| 559 |
+
):
|
| 560 |
+
raise ValueError(
|
| 561 |
+
"Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 565 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 566 |
+
raise ValueError(
|
| 567 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 568 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 569 |
+
f" {negative_prompt_embeds.shape}."
|
| 570 |
+
)
|
| 571 |
+
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
| 572 |
+
raise ValueError(
|
| 573 |
+
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
| 574 |
+
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
| 575 |
+
f" {negative_prompt_attention_mask.shape}."
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
| 579 |
+
def _text_preprocessing(self, text, clean_caption=False):
|
| 580 |
+
if clean_caption and not is_bs4_available():
|
| 581 |
+
logger.warning(
|
| 582 |
+
BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")
|
| 583 |
+
)
|
| 584 |
+
logger.warning("Setting `clean_caption` to False...")
|
| 585 |
+
clean_caption = False
|
| 586 |
+
|
| 587 |
+
if clean_caption and not is_ftfy_available():
|
| 588 |
+
logger.warning(
|
| 589 |
+
BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")
|
| 590 |
+
)
|
| 591 |
+
logger.warning("Setting `clean_caption` to False...")
|
| 592 |
+
clean_caption = False
|
| 593 |
+
|
| 594 |
+
if not isinstance(text, (tuple, list)):
|
| 595 |
+
text = [text]
|
| 596 |
+
|
| 597 |
+
def process(text: str):
|
| 598 |
+
if clean_caption:
|
| 599 |
+
text = self._clean_caption(text)
|
| 600 |
+
text = self._clean_caption(text)
|
| 601 |
+
else:
|
| 602 |
+
text = text.lower().strip()
|
| 603 |
+
return text
|
| 604 |
+
|
| 605 |
+
return [process(t) for t in text]
|
| 606 |
+
|
| 607 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
| 608 |
+
def _clean_caption(self, caption):
|
| 609 |
+
caption = str(caption)
|
| 610 |
+
caption = ul.unquote_plus(caption)
|
| 611 |
+
caption = caption.strip().lower()
|
| 612 |
+
caption = re.sub("<person>", "person", caption)
|
| 613 |
+
# urls:
|
| 614 |
+
caption = re.sub(
|
| 615 |
+
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
| 616 |
+
"",
|
| 617 |
+
caption,
|
| 618 |
+
) # regex for urls
|
| 619 |
+
caption = re.sub(
|
| 620 |
+
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
| 621 |
+
"",
|
| 622 |
+
caption,
|
| 623 |
+
) # regex for urls
|
| 624 |
+
# html:
|
| 625 |
+
caption = BeautifulSoup(caption, features="html.parser").text
|
| 626 |
+
|
| 627 |
+
# @<nickname>
|
| 628 |
+
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
| 629 |
+
|
| 630 |
+
# 31C0—31EF CJK Strokes
|
| 631 |
+
# 31F0—31FF Katakana Phonetic Extensions
|
| 632 |
+
# 3200—32FF Enclosed CJK Letters and Months
|
| 633 |
+
# 3300—33FF CJK Compatibility
|
| 634 |
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
| 635 |
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
| 636 |
+
# 4E00—9FFF CJK Unified Ideographs
|
| 637 |
+
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
| 638 |
+
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
| 639 |
+
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
| 640 |
+
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
| 641 |
+
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
| 642 |
+
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
| 643 |
+
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
| 644 |
+
#######################################################
|
| 645 |
+
|
| 646 |
+
# все виды тире / all types of dash --> "-"
|
| 647 |
+
caption = re.sub(
|
| 648 |
+
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
| 649 |
+
"-",
|
| 650 |
+
caption,
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
# кавычки к одному стандарту
|
| 654 |
+
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
| 655 |
+
caption = re.sub(r"[‘’]", "'", caption)
|
| 656 |
+
|
| 657 |
+
# "
|
| 658 |
+
caption = re.sub(r""?", "", caption)
|
| 659 |
+
# &
|
| 660 |
+
caption = re.sub(r"&", "", caption)
|
| 661 |
+
|
| 662 |
+
# ip adresses:
|
| 663 |
+
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
| 664 |
+
|
| 665 |
+
# article ids:
|
| 666 |
+
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
| 667 |
+
|
| 668 |
+
# \n
|
| 669 |
+
caption = re.sub(r"\\n", " ", caption)
|
| 670 |
+
|
| 671 |
+
# "#123"
|
| 672 |
+
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
| 673 |
+
# "#12345.."
|
| 674 |
+
caption = re.sub(r"#\d{5,}\b", "", caption)
|
| 675 |
+
# "123456.."
|
| 676 |
+
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
| 677 |
+
# filenames:
|
| 678 |
+
caption = re.sub(
|
| 679 |
+
r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption
|
| 680 |
+
)
|
| 681 |
+
|
| 682 |
+
#
|
| 683 |
+
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
| 684 |
+
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
| 685 |
+
|
| 686 |
+
caption = re.sub(
|
| 687 |
+
self.bad_punct_regex, r" ", caption
|
| 688 |
+
) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
| 689 |
+
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
| 690 |
+
|
| 691 |
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
| 692 |
+
regex2 = re.compile(r"(?:\-|\_)")
|
| 693 |
+
if len(re.findall(regex2, caption)) > 3:
|
| 694 |
+
caption = re.sub(regex2, " ", caption)
|
| 695 |
+
|
| 696 |
+
caption = ftfy.fix_text(caption)
|
| 697 |
+
caption = html.unescape(html.unescape(caption))
|
| 698 |
+
|
| 699 |
+
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
| 700 |
+
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
| 701 |
+
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
| 702 |
+
|
| 703 |
+
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
| 704 |
+
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
| 705 |
+
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
| 706 |
+
caption = re.sub(
|
| 707 |
+
r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption
|
| 708 |
+
)
|
| 709 |
+
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
| 710 |
+
|
| 711 |
+
caption = re.sub(
|
| 712 |
+
r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption
|
| 713 |
+
) # j2d1a2a...
|
| 714 |
+
|
| 715 |
+
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
| 716 |
+
|
| 717 |
+
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
| 718 |
+
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
| 719 |
+
caption = re.sub(r"\s+", " ", caption)
|
| 720 |
+
|
| 721 |
+
caption.strip()
|
| 722 |
+
|
| 723 |
+
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
| 724 |
+
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
| 725 |
+
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
| 726 |
+
caption = re.sub(r"^\.\S+$", "", caption)
|
| 727 |
+
|
| 728 |
+
return caption.strip()
|
| 729 |
+
|
| 730 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 731 |
+
def prepare_latents(
|
| 732 |
+
self,
|
| 733 |
+
batch_size,
|
| 734 |
+
num_channels_latents,
|
| 735 |
+
height,
|
| 736 |
+
width,
|
| 737 |
+
dtype,
|
| 738 |
+
device,
|
| 739 |
+
generator,
|
| 740 |
+
_latents=None,
|
| 741 |
+
timestep=None,
|
| 742 |
+
add_noise=False,
|
| 743 |
+
image=None,
|
| 744 |
+
):
|
| 745 |
+
shape = (
|
| 746 |
+
batch_size,
|
| 747 |
+
num_channels_latents,
|
| 748 |
+
int(height) // self.vae_scale_factor,
|
| 749 |
+
int(width) // self.vae_scale_factor,
|
| 750 |
+
)
|
| 751 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 752 |
+
raise ValueError(
|
| 753 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 754 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 755 |
+
)
|
| 756 |
+
|
| 757 |
+
if _latents is not None:
|
| 758 |
+
init_latents = _latents.to(device)
|
| 759 |
+
elif image is None and _latents is None:
|
| 760 |
+
debug_print("Make random latents tensor")
|
| 761 |
+
init_latents = randn_tensor(
|
| 762 |
+
shape, generator=generator, device=device, dtype=dtype
|
| 763 |
+
)
|
| 764 |
+
|
| 765 |
+
latents_mean = latents_std = None
|
| 766 |
+
if (
|
| 767 |
+
hasattr(self.vae.config, "latents_mean")
|
| 768 |
+
and self.vae.config.latents_mean is not None
|
| 769 |
+
):
|
| 770 |
+
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
|
| 771 |
+
if (
|
| 772 |
+
hasattr(self.vae.config, "latents_std")
|
| 773 |
+
and self.vae.config.latents_std is not None
|
| 774 |
+
):
|
| 775 |
+
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
|
| 776 |
+
if image is not None and hasattr(image, "shape") and image.shape[1] == 4:
|
| 777 |
+
debug_print("Received valid latent image input.")
|
| 778 |
+
init_latents = image
|
| 779 |
+
|
| 780 |
+
if init_latents is not None:
|
| 781 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 782 |
+
debug_print(f"Scaling the initial noise by the std required by the scheduler.")
|
| 783 |
+
init_latents = init_latents * self.scheduler.init_noise_sigma
|
| 784 |
+
|
| 785 |
+
if image is not None and image.shape[1] < 4:
|
| 786 |
+
debug_print("Received RGB or similar image. Processing..")
|
| 787 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
| 788 |
+
if self.vae.config.force_upcast:
|
| 789 |
+
image = image.float()
|
| 790 |
+
self.vae.to(dtype=torch.float32)
|
| 791 |
+
|
| 792 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 793 |
+
raise ValueError(
|
| 794 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 795 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 796 |
+
)
|
| 797 |
+
|
| 798 |
+
elif isinstance(generator, list):
|
| 799 |
+
init_latents = [
|
| 800 |
+
retrieve_latents(
|
| 801 |
+
self.vae.encode(image[i : i + 1]), generator=generator[i]
|
| 802 |
+
)
|
| 803 |
+
for i in range(batch_size)
|
| 804 |
+
]
|
| 805 |
+
init_latents = torch.cat(init_latents, dim=0)
|
| 806 |
+
else:
|
| 807 |
+
debug_print("Encode image to latents.")
|
| 808 |
+
init_latents = retrieve_latents(
|
| 809 |
+
self.vae.encode(image), generator=generator
|
| 810 |
+
)
|
| 811 |
+
|
| 812 |
+
if self.vae.config.force_upcast:
|
| 813 |
+
self.vae.to(dtype)
|
| 814 |
+
|
| 815 |
+
debug_print("Set initial latents..")
|
| 816 |
+
init_latents = init_latents.to(dtype)
|
| 817 |
+
if latents_mean is not None and latents_std is not None:
|
| 818 |
+
debug_print("Scaling latents by mean/std")
|
| 819 |
+
latents_mean = latents_mean.to(device=device, dtype=dtype)
|
| 820 |
+
latents_std = latents_std.to(device=device, dtype=dtype)
|
| 821 |
+
init_latents = (
|
| 822 |
+
(init_latents - latents_mean)
|
| 823 |
+
* self.vae.config.scaling_factor
|
| 824 |
+
/ latents_std
|
| 825 |
+
)
|
| 826 |
+
else:
|
| 827 |
+
debug_print("Scaling latents only by scaling_factor")
|
| 828 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
| 829 |
+
|
| 830 |
+
if (
|
| 831 |
+
batch_size > init_latents.shape[0]
|
| 832 |
+
and batch_size % init_latents.shape[0] == 0
|
| 833 |
+
):
|
| 834 |
+
# expand init_latents for batch_size
|
| 835 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
| 836 |
+
init_latents = torch.cat(
|
| 837 |
+
[init_latents] * additional_image_per_prompt, dim=0
|
| 838 |
+
)
|
| 839 |
+
elif (
|
| 840 |
+
batch_size > init_latents.shape[0]
|
| 841 |
+
and batch_size % init_latents.shape[0] != 0
|
| 842 |
+
):
|
| 843 |
+
raise ValueError(
|
| 844 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
| 845 |
+
)
|
| 846 |
+
else:
|
| 847 |
+
init_latents = torch.cat([init_latents], dim=0)
|
| 848 |
+
|
| 849 |
+
if (
|
| 850 |
+
add_noise
|
| 851 |
+
and timestep is not None
|
| 852 |
+
and (_latents is not None or image is not None)
|
| 853 |
+
):
|
| 854 |
+
shape = init_latents.shape
|
| 855 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 856 |
+
# get latents
|
| 857 |
+
debug_print(f"Adding noise to tensor for timestep: {timestep}")
|
| 858 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
| 859 |
+
|
| 860 |
+
return init_latents
|
| 861 |
+
|
| 862 |
+
@property
|
| 863 |
+
def denoising_start(self):
|
| 864 |
+
return self._denoising_start
|
| 865 |
+
|
| 866 |
+
@property
|
| 867 |
+
def denoising_end(self):
|
| 868 |
+
return self._denoising_end
|
| 869 |
+
|
| 870 |
+
@property
|
| 871 |
+
def num_timesteps(self):
|
| 872 |
+
return self._num_timesteps
|
| 873 |
+
|
| 874 |
+
@torch.no_grad()
|
| 875 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 876 |
+
def __call__(
|
| 877 |
+
self,
|
| 878 |
+
prompt: Union[str, List[str]] = None,
|
| 879 |
+
negative_prompt: str = "",
|
| 880 |
+
strength: float = None,
|
| 881 |
+
num_inference_steps: int = 20,
|
| 882 |
+
timesteps: List[int] = None,
|
| 883 |
+
sigmas: List[float] = None,
|
| 884 |
+
denoising_start: Optional[float] = None,
|
| 885 |
+
denoising_end: Optional[float] = None,
|
| 886 |
+
guidance_scale: float = 4.5,
|
| 887 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 888 |
+
height: Optional[int] = None,
|
| 889 |
+
width: Optional[int] = None,
|
| 890 |
+
eta: float = 0.0,
|
| 891 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 892 |
+
image: Optional[PipelineImageInput] = None,
|
| 893 |
+
latents: Optional[torch.Tensor] = None,
|
| 894 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 895 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
| 896 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 897 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
| 898 |
+
output_type: Optional[str] = "pil",
|
| 899 |
+
return_dict: bool = True,
|
| 900 |
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 901 |
+
callback_steps: int = 1,
|
| 902 |
+
clean_caption: bool = True,
|
| 903 |
+
use_resolution_binning: bool = True,
|
| 904 |
+
max_sequence_length: int = 300,
|
| 905 |
+
**kwargs,
|
| 906 |
+
) -> Union[ImagePipelineOutput, Tuple]:
|
| 907 |
+
"""
|
| 908 |
+
Function invoked when calling the pipeline for generation.
|
| 909 |
+
|
| 910 |
+
Args:
|
| 911 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 912 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 913 |
+
instead.
|
| 914 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 915 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 916 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 917 |
+
less than `1`).
|
| 918 |
+
strength (`float`, *optional*, defaults to 0.3):
|
| 919 |
+
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
|
| 920 |
+
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
|
| 921 |
+
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
|
| 922 |
+
be maximum and the denoising process will run for the full number of iterations specified in
|
| 923 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of
|
| 924 |
+
`denoising_start` being declared as an integer, the value of `strength` will be ignored.
|
| 925 |
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
| 926 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 927 |
+
expense of slower inference.
|
| 928 |
+
denoising_start (`float`, *optional*):
|
| 929 |
+
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
| 930 |
+
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
| 931 |
+
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
| 932 |
+
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
| 933 |
+
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
|
| 934 |
+
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
|
| 935 |
+
denoising_end (`float`, *optional*):
|
| 936 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
| 937 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
| 938 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
| 939 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
| 940 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
| 941 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
| 942 |
+
timesteps (`List[int]`, *optional*):
|
| 943 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 944 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 945 |
+
passed will be used. Must be in descending order.
|
| 946 |
+
sigmas (`List[float]`, *optional*):
|
| 947 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 948 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 949 |
+
will be used.
|
| 950 |
+
guidance_scale (`float`, *optional*, defaults to 4.5):
|
| 951 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 952 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 953 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 954 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 955 |
+
usually at the expense of lower image quality.
|
| 956 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 957 |
+
The number of images to generate per prompt.
|
| 958 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
| 959 |
+
The height in pixels of the generated image.
|
| 960 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
| 961 |
+
The width in pixels of the generated image.
|
| 962 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 963 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 964 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 965 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 966 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 967 |
+
to make generation deterministic.
|
| 968 |
+
latents (`torch.Tensor`, *optional*):
|
| 969 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 970 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 971 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 972 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 973 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 974 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 975 |
+
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
|
| 976 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 977 |
+
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
|
| 978 |
+
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
| 979 |
+
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
| 980 |
+
Pre-generated attention mask for negative text embeddings.
|
| 981 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 982 |
+
The output format of the generate image. Choose between
|
| 983 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 984 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 985 |
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
| 986 |
+
callback (`Callable`, *optional*):
|
| 987 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 988 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
| 989 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 990 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 991 |
+
called at every step.
|
| 992 |
+
clean_caption (`bool`, *optional*, defaults to `True`):
|
| 993 |
+
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
| 994 |
+
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
| 995 |
+
prompt.
|
| 996 |
+
use_resolution_binning (`bool` defaults to `True`):
|
| 997 |
+
If set to `True`, the requested height and width are first mapped to the closest resolutions using
|
| 998 |
+
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
|
| 999 |
+
the requested resolution. Useful for generating non-square images.
|
| 1000 |
+
max_sequence_length (`int` defaults to 300): Maximum sequence length to use with the `prompt`.
|
| 1001 |
+
|
| 1002 |
+
Examples:
|
| 1003 |
+
|
| 1004 |
+
Returns:
|
| 1005 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
| 1006 |
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
| 1007 |
+
returned where the first element is a list with the generated images
|
| 1008 |
+
"""
|
| 1009 |
+
# 1. Check inputs. Raise error if not correct
|
| 1010 |
+
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
| 1011 |
+
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
| 1012 |
+
if use_resolution_binning:
|
| 1013 |
+
if self.transformer.config.sample_size == 256:
|
| 1014 |
+
aspect_ratio_bin = ASPECT_RATIO_2048_BIN
|
| 1015 |
+
elif self.transformer.config.sample_size == 128:
|
| 1016 |
+
aspect_ratio_bin = ASPECT_RATIO_1024_BIN
|
| 1017 |
+
elif self.transformer.config.sample_size == 64:
|
| 1018 |
+
aspect_ratio_bin = ASPECT_RATIO_512_BIN
|
| 1019 |
+
elif self.transformer.config.sample_size == 32:
|
| 1020 |
+
aspect_ratio_bin = ASPECT_RATIO_256_BIN
|
| 1021 |
+
else:
|
| 1022 |
+
raise ValueError("Invalid sample size")
|
| 1023 |
+
orig_height, orig_width = height, width
|
| 1024 |
+
height, width = self.image_processor.classify_height_width_bin(
|
| 1025 |
+
height, width, ratios=aspect_ratio_bin
|
| 1026 |
+
)
|
| 1027 |
+
|
| 1028 |
+
self.check_inputs(
|
| 1029 |
+
prompt,
|
| 1030 |
+
height,
|
| 1031 |
+
width,
|
| 1032 |
+
strength,
|
| 1033 |
+
num_inference_steps,
|
| 1034 |
+
negative_prompt,
|
| 1035 |
+
callback_steps,
|
| 1036 |
+
prompt_embeds,
|
| 1037 |
+
negative_prompt_embeds,
|
| 1038 |
+
prompt_attention_mask,
|
| 1039 |
+
negative_prompt_attention_mask,
|
| 1040 |
+
)
|
| 1041 |
+
|
| 1042 |
+
# 2. Default height and width to transformer
|
| 1043 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1044 |
+
batch_size = 1
|
| 1045 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1046 |
+
batch_size = len(prompt)
|
| 1047 |
+
else:
|
| 1048 |
+
batch_size = prompt_embeds.shape[0]
|
| 1049 |
+
|
| 1050 |
+
device = self._execution_device
|
| 1051 |
+
self._denoising_start = denoising_start
|
| 1052 |
+
self._num_timesteps = num_inference_steps
|
| 1053 |
+
self._denoising_end = denoising_end
|
| 1054 |
+
|
| 1055 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 1056 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 1057 |
+
# corresponds to doing no classifier free guidance.
|
| 1058 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 1059 |
+
|
| 1060 |
+
# 3. Encode input prompt
|
| 1061 |
+
(
|
| 1062 |
+
prompt_embeds,
|
| 1063 |
+
prompt_attention_mask,
|
| 1064 |
+
negative_prompt_embeds,
|
| 1065 |
+
negative_prompt_attention_mask,
|
| 1066 |
+
) = self.encode_prompt(
|
| 1067 |
+
prompt,
|
| 1068 |
+
do_classifier_free_guidance,
|
| 1069 |
+
negative_prompt=negative_prompt,
|
| 1070 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1071 |
+
device=device,
|
| 1072 |
+
prompt_embeds=prompt_embeds,
|
| 1073 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1074 |
+
prompt_attention_mask=prompt_attention_mask,
|
| 1075 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
| 1076 |
+
clean_caption=clean_caption,
|
| 1077 |
+
max_sequence_length=max_sequence_length,
|
| 1078 |
+
)
|
| 1079 |
+
if do_classifier_free_guidance:
|
| 1080 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 1081 |
+
prompt_attention_mask = torch.cat(
|
| 1082 |
+
[negative_prompt_attention_mask, prompt_attention_mask], dim=0
|
| 1083 |
+
)
|
| 1084 |
+
|
| 1085 |
+
# 4. Prepare timesteps
|
| 1086 |
+
def denoising_value_valid(dnv):
|
| 1087 |
+
return isinstance(dnv, float) and 0 < dnv < 1
|
| 1088 |
+
|
| 1089 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1090 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
| 1091 |
+
)
|
| 1092 |
+
|
| 1093 |
+
# 5. Prepare latents.
|
| 1094 |
+
if image is not None:
|
| 1095 |
+
image = self.image_processor.preprocess(image)
|
| 1096 |
+
image = image.to(device=self.vae.device, dtype=self.vae.dtype)
|
| 1097 |
+
|
| 1098 |
+
latent_channels = self.transformer.config.in_channels
|
| 1099 |
+
latent_timestep = None
|
| 1100 |
+
if (
|
| 1101 |
+
denoising_end is not None
|
| 1102 |
+
or denoising_start is not None
|
| 1103 |
+
or strength is not None
|
| 1104 |
+
):
|
| 1105 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
| 1106 |
+
num_inference_steps,
|
| 1107 |
+
strength,
|
| 1108 |
+
device,
|
| 1109 |
+
denoising_start=(
|
| 1110 |
+
self.denoising_start
|
| 1111 |
+
if denoising_value_valid(self.denoising_start)
|
| 1112 |
+
else None
|
| 1113 |
+
),
|
| 1114 |
+
)
|
| 1115 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
| 1116 |
+
if latents is not None:
|
| 1117 |
+
height, width = latents.shape[-2:]
|
| 1118 |
+
height = height * self.vae_scale_factor
|
| 1119 |
+
width = width * self.vae_scale_factor
|
| 1120 |
+
add_noise = (
|
| 1121 |
+
True
|
| 1122 |
+
if (
|
| 1123 |
+
self.denoising_start is None
|
| 1124 |
+
and (image is not None or latents is not None)
|
| 1125 |
+
)
|
| 1126 |
+
else False
|
| 1127 |
+
)
|
| 1128 |
+
debug_print(f"Add_noise: {add_noise}")
|
| 1129 |
+
if latents is None:
|
| 1130 |
+
debug_print("Prepare latents..")
|
| 1131 |
+
latents = self.prepare_latents(
|
| 1132 |
+
batch_size * num_images_per_prompt,
|
| 1133 |
+
latent_channels,
|
| 1134 |
+
height,
|
| 1135 |
+
width,
|
| 1136 |
+
prompt_embeds.dtype,
|
| 1137 |
+
device,
|
| 1138 |
+
generator,
|
| 1139 |
+
latents,
|
| 1140 |
+
timestep=latent_timestep,
|
| 1141 |
+
add_noise=add_noise,
|
| 1142 |
+
image=image,
|
| 1143 |
+
)
|
| 1144 |
+
|
| 1145 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 1146 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1147 |
+
|
| 1148 |
+
# 6.1 Prepare micro-conditions.
|
| 1149 |
+
added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
|
| 1150 |
+
|
| 1151 |
+
# 7. Denoising loop
|
| 1152 |
+
num_warmup_steps = max(
|
| 1153 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
| 1154 |
+
)
|
| 1155 |
+
if (
|
| 1156 |
+
self.denoising_end is not None
|
| 1157 |
+
and self.denoising_start is not None
|
| 1158 |
+
and denoising_value_valid(self.denoising_end)
|
| 1159 |
+
and denoising_value_valid(self.denoising_start)
|
| 1160 |
+
and self.denoising_start >= self.denoising_end
|
| 1161 |
+
):
|
| 1162 |
+
raise ValueError(
|
| 1163 |
+
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
|
| 1164 |
+
+ f" {self.denoising_end} when using type float."
|
| 1165 |
+
)
|
| 1166 |
+
if self.denoising_start is not None:
|
| 1167 |
+
if denoising_value_valid(self.denoising_start):
|
| 1168 |
+
discrete_timestep_cutoff = int(
|
| 1169 |
+
round(
|
| 1170 |
+
self.scheduler.config.num_train_timesteps
|
| 1171 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
| 1172 |
+
)
|
| 1173 |
+
)
|
| 1174 |
+
|
| 1175 |
+
num_inference_steps = (
|
| 1176 |
+
(timesteps < discrete_timestep_cutoff).sum().item()
|
| 1177 |
+
)
|
| 1178 |
+
debug_print(
|
| 1179 |
+
f"Beginning inference for stage2 with {num_inference_steps} steps."
|
| 1180 |
+
)
|
| 1181 |
+
|
| 1182 |
+
else:
|
| 1183 |
+
raise ValueError(
|
| 1184 |
+
f"`denoising_start` must be a float between 0 and 1: {denoising_start}"
|
| 1185 |
+
)
|
| 1186 |
+
if self.denoising_end is not None:
|
| 1187 |
+
if denoising_value_valid(self.denoising_end):
|
| 1188 |
+
discrete_timestep_cutoff = int(
|
| 1189 |
+
round(
|
| 1190 |
+
self.scheduler.config.num_train_timesteps
|
| 1191 |
+
- (
|
| 1192 |
+
self.denoising_end
|
| 1193 |
+
* self.scheduler.config.num_train_timesteps
|
| 1194 |
+
)
|
| 1195 |
+
)
|
| 1196 |
+
)
|
| 1197 |
+
num_inference_steps = len(
|
| 1198 |
+
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
|
| 1199 |
+
)
|
| 1200 |
+
debug_print(
|
| 1201 |
+
f"Beginning inference for stage1 with {num_inference_steps} steps."
|
| 1202 |
+
)
|
| 1203 |
+
timesteps = timesteps[:num_inference_steps]
|
| 1204 |
+
else:
|
| 1205 |
+
raise ValueError(
|
| 1206 |
+
f"`denoising_end` must be a float between 0 and 1: {denoising_end}"
|
| 1207 |
+
)
|
| 1208 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1209 |
+
for i, t in enumerate(timesteps):
|
| 1210 |
+
latent_model_input = (
|
| 1211 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 1212 |
+
)
|
| 1213 |
+
latent_model_input = self.scheduler.scale_model_input(
|
| 1214 |
+
latent_model_input, t
|
| 1215 |
+
)
|
| 1216 |
+
|
| 1217 |
+
current_timestep = t
|
| 1218 |
+
if not torch.is_tensor(current_timestep):
|
| 1219 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 1220 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 1221 |
+
is_mps = latent_model_input.device.type == "mps"
|
| 1222 |
+
if isinstance(current_timestep, float):
|
| 1223 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 1224 |
+
else:
|
| 1225 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 1226 |
+
current_timestep = torch.tensor(
|
| 1227 |
+
[current_timestep],
|
| 1228 |
+
dtype=dtype,
|
| 1229 |
+
device=latent_model_input.device,
|
| 1230 |
+
)
|
| 1231 |
+
elif len(current_timestep.shape) == 0:
|
| 1232 |
+
current_timestep = current_timestep[None].to(
|
| 1233 |
+
latent_model_input.device
|
| 1234 |
+
)
|
| 1235 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1236 |
+
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
| 1237 |
+
|
| 1238 |
+
# predict noise model_output
|
| 1239 |
+
noise_pred = self.transformer(
|
| 1240 |
+
latent_model_input.to(
|
| 1241 |
+
device=self.transformer.device, dtype=self.transformer.dtype
|
| 1242 |
+
),
|
| 1243 |
+
encoder_hidden_states=prompt_embeds,
|
| 1244 |
+
encoder_attention_mask=prompt_attention_mask,
|
| 1245 |
+
timestep=current_timestep,
|
| 1246 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 1247 |
+
return_dict=False,
|
| 1248 |
+
)[0]
|
| 1249 |
+
|
| 1250 |
+
# perform guidance
|
| 1251 |
+
if do_classifier_free_guidance:
|
| 1252 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1253 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 1254 |
+
noise_pred_text - noise_pred_uncond
|
| 1255 |
+
)
|
| 1256 |
+
|
| 1257 |
+
# learned sigma
|
| 1258 |
+
if self.transformer.config.out_channels // 2 == latent_channels:
|
| 1259 |
+
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
| 1260 |
+
else:
|
| 1261 |
+
noise_pred = noise_pred
|
| 1262 |
+
|
| 1263 |
+
# compute previous image: x_t -> x_t-1
|
| 1264 |
+
latents = self.scheduler.step(
|
| 1265 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
| 1266 |
+
)[0]
|
| 1267 |
+
|
| 1268 |
+
# call the callback, if provided
|
| 1269 |
+
if i == len(timesteps) - 1 or (
|
| 1270 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 1271 |
+
):
|
| 1272 |
+
progress_bar.update()
|
| 1273 |
+
if callback is not None and i % callback_steps == 0:
|
| 1274 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 1275 |
+
callback(step_idx, t, latents)
|
| 1276 |
+
|
| 1277 |
+
if not output_type == "latent":
|
| 1278 |
+
image = self.vae.decode(
|
| 1279 |
+
latents.to(device=self.vae.device, dtype=self.vae.dtype)
|
| 1280 |
+
/ self.vae.config.scaling_factor,
|
| 1281 |
+
return_dict=False,
|
| 1282 |
+
)[0]
|
| 1283 |
+
if use_resolution_binning:
|
| 1284 |
+
image = self.image_processor.resize_and_crop_tensor(
|
| 1285 |
+
image, orig_width, orig_height
|
| 1286 |
+
)
|
| 1287 |
+
else:
|
| 1288 |
+
image = latents
|
| 1289 |
+
|
| 1290 |
+
if not output_type == "latent":
|
| 1291 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1292 |
+
|
| 1293 |
+
# Offload all models
|
| 1294 |
+
self.maybe_free_model_hooks()
|
| 1295 |
+
|
| 1296 |
+
if not return_dict:
|
| 1297 |
+
return (image,)
|
| 1298 |
+
|
| 1299 |
+
return ImagePipelineOutput(images=image)
|