Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,201 +1,167 @@
|
|
|
|
|
|
|
|
| 1 |
import os, random, uuid, json
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
| 4 |
from PIL import Image
|
| 5 |
import spaces
|
| 6 |
import torch
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
if not torch.cuda.is_available():
|
| 11 |
-
DESCRIPTION
|
| 12 |
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
| 15 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 16 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 17 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 18 |
|
| 19 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
add_watermarker=False
|
| 26 |
-
)
|
| 27 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 28 |
-
|
| 29 |
-
if torch.cuda.is_available():
|
| 30 |
-
pipe.to("cuda")
|
| 31 |
else:
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 40 |
-
if randomize_seed:
|
| 41 |
-
seed = random.randint(0, MAX_SEED)
|
| 42 |
return seed
|
| 43 |
|
| 44 |
-
@spaces.GPU(duration=
|
| 45 |
def generate(
|
| 46 |
prompt: str,
|
| 47 |
negative_prompt: str = "",
|
| 48 |
-
use_negative_prompt: bool =
|
| 49 |
seed: int = 0,
|
| 50 |
width: int = 1024,
|
| 51 |
height: int = 1024,
|
| 52 |
-
guidance_scale: float =
|
| 53 |
num_inference_steps: int = 25,
|
| 54 |
randomize_seed: bool = False,
|
| 55 |
-
use_resolution_binning: bool = True,
|
| 56 |
progress=gr.Progress(track_tqdm=True),
|
| 57 |
):
|
|
|
|
| 58 |
pipe.to(device)
|
| 59 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 60 |
-
generator = torch.Generator().manual_seed(seed)
|
| 61 |
-
|
| 62 |
-
options = {
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
"
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
"
|
| 71 |
-
"
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
image_paths = [save_image(img) for img in images]
|
| 78 |
-
return image_paths, seed
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
examples = [
|
| 82 |
-
"a cat eating a piece of cheese",
|
| 83 |
-
"a ROBOT riding a BLUE horse on Mars, photorealistic",
|
| 84 |
-
"a cartoon of a IRONMAN fighting with HULK, wall painting",
|
| 85 |
-
"a cute robot artist painting on an easel, concept art",
|
| 86 |
-
"Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
|
| 87 |
-
"An alien grasping a sign board contain word 'Flash', futuristic, neonpunk, detailed",
|
| 88 |
-
"Kids going to school, Anime style"
|
| 89 |
-
]
|
| 90 |
-
|
| 91 |
-
css = '''
|
| 92 |
-
.gradio-container {
|
| 93 |
-
max-width: 700px !important;
|
| 94 |
-
margin: 0 auto !important;
|
| 95 |
-
}
|
| 96 |
-
h1{text-align:left}
|
| 97 |
-
'''
|
| 98 |
with gr.Blocks(css=css) as demo:
|
| 99 |
-
gr.Markdown(f"""# SDXL
|
| 100 |
-
|
| 101 |
{DESCRIPTION}""")
|
| 102 |
with gr.Group():
|
| 103 |
with gr.Row():
|
| 104 |
-
prompt = gr.Text(
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
placeholder="Enter your prompt",
|
| 109 |
-
container=False,
|
| 110 |
-
)
|
| 111 |
-
run_button = gr.Button("Run", scale=0)
|
| 112 |
-
result = gr.Gallery(label="Result", columns=1)
|
| 113 |
-
with gr.Accordion("Advanced options", open=False):
|
| 114 |
with gr.Row():
|
| 115 |
-
use_negative_prompt = gr.Checkbox(label="
|
| 116 |
-
negative_prompt = gr.Text(
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
lines=4,
|
| 120 |
-
placeholder="Enter a negative prompt",
|
| 121 |
-
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
|
| 122 |
-
visible=True,
|
| 123 |
-
)
|
| 124 |
-
seed = gr.Slider(
|
| 125 |
-
label="Seed",
|
| 126 |
-
minimum=0,
|
| 127 |
-
maximum=MAX_SEED,
|
| 128 |
-
step=1,
|
| 129 |
-
value=0,
|
| 130 |
-
)
|
| 131 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 132 |
-
with gr.Row(visible=True):
|
| 133 |
-
width = gr.Slider(
|
| 134 |
-
label="Width",
|
| 135 |
-
minimum=512,
|
| 136 |
-
maximum=MAX_IMAGE_SIZE,
|
| 137 |
-
step=64,
|
| 138 |
-
value=1024,
|
| 139 |
-
)
|
| 140 |
-
height = gr.Slider(
|
| 141 |
-
label="Height",
|
| 142 |
-
minimum=512,
|
| 143 |
-
maximum=MAX_IMAGE_SIZE,
|
| 144 |
-
step=64,
|
| 145 |
-
value=1024,
|
| 146 |
-
)
|
| 147 |
with gr.Row():
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
step=1,
|
| 160 |
-
value=8,
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
-
gr.Examples(
|
| 164 |
-
examples=examples,
|
| 165 |
-
inputs=prompt,
|
| 166 |
-
outputs=[result, seed],
|
| 167 |
-
fn=generate,
|
| 168 |
-
cache_examples=True,
|
| 169 |
-
)
|
| 170 |
-
|
| 171 |
-
use_negative_prompt.change(
|
| 172 |
-
fn=lambda x: gr.update(visible=x),
|
| 173 |
-
inputs=use_negative_prompt,
|
| 174 |
-
outputs=negative_prompt,
|
| 175 |
-
api_name=False,
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
-
gr.on(
|
| 179 |
-
triggers=[
|
| 180 |
-
prompt.submit,
|
| 181 |
-
negative_prompt.submit,
|
| 182 |
-
run_button.click,
|
| 183 |
-
],
|
| 184 |
-
fn=generate,
|
| 185 |
-
inputs=[
|
| 186 |
-
prompt,
|
| 187 |
-
negative_prompt,
|
| 188 |
-
use_negative_prompt,
|
| 189 |
-
seed,
|
| 190 |
-
width,
|
| 191 |
-
height,
|
| 192 |
-
guidance_scale,
|
| 193 |
-
num_inference_steps,
|
| 194 |
-
randomize_seed,
|
| 195 |
-
],
|
| 196 |
-
outputs=[result, seed],
|
| 197 |
-
api_name="run",
|
| 198 |
-
)
|
| 199 |
-
|
| 200 |
if __name__ == "__main__":
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py - Carrega base + UNet de repo privado separado
|
| 2 |
+
# Data e hora atuais para referência: Sunday, May 4, 2025 at 8:23:22 PM -03
|
| 3 |
import os, random, uuid, json
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
from PIL import Image
|
| 7 |
import spaces
|
| 8 |
import torch
|
| 9 |
+
# Importar UNet também
|
| 10 |
+
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerAncestralDiscreteScheduler
|
| 11 |
+
import time
|
| 12 |
+
from huggingface_hub import HfApi
|
| 13 |
|
| 14 |
+
# --- Configurações ---
|
| 15 |
+
base_model_id = "sd-community/sdxl-flash" # Ou o base que o Space usava
|
| 16 |
+
# ID do Repositório PRIVADO que contém APENAS o UNet treinado
|
| 17 |
+
tuned_unet_repo_id = "borsojj/unet" # <<< Repo com seu UNet
|
| 18 |
+
|
| 19 |
+
DESCRIPTION = f"Interface usando base `{base_model_id}` com UNet de `{tuned_unet_repo_id}`."
|
| 20 |
if not torch.cuda.is_available():
|
| 21 |
+
DESCRIPTION += "\n**Atenção:** Rodando em CPU 🥶 - A geração pode ser muito lenta ou falhar."
|
| 22 |
|
| 23 |
MAX_SEED = np.iinfo(np.int32).max
|
| 24 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
| 25 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
|
|
|
|
|
|
| 26 |
|
| 27 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 28 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 29 |
|
| 30 |
+
print(f"Carregando pipeline base de: {base_model_id}...")
|
| 31 |
+
hf_token = os.getenv("HF_TOKEN") # Pega token dos segredos do Space
|
| 32 |
+
if hf_token:
|
| 33 |
+
print("Segredo HF_TOKEN encontrado.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
else:
|
| 35 |
+
# AVISO IMPORTANTE se o repo UNET for privado!
|
| 36 |
+
print("AVISO: Segredo HF_TOKEN NÃO encontrado. O carregamento do UNet treinado falhará se o repositório for privado.")
|
| 37 |
+
|
| 38 |
+
start_time = time.time()
|
| 39 |
+
pipe = None
|
| 40 |
+
loading_error_message = ""
|
| 41 |
+
try:
|
| 42 |
+
# 1. Carrega o pipeline base completo
|
| 43 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 44 |
+
base_model_id,
|
| 45 |
+
torch_dtype=torch_dtype,
|
| 46 |
+
use_safetensors=True,
|
| 47 |
+
add_watermarker=False,
|
| 48 |
+
token=hf_token # Passa token caso o base precise também
|
| 49 |
+
)
|
| 50 |
+
print(f"Pipeline base '{base_model_id}' carregado.")
|
| 51 |
+
|
| 52 |
+
# 2. Tenta carregar e substituir o UNet do repo separado e PRIVADO
|
| 53 |
+
if hf_token: # Só tenta carregar se houver token
|
| 54 |
+
print(f"Tentando carregar UNet treinado do repo privado: {tuned_unet_repo_id}")
|
| 55 |
+
try:
|
| 56 |
+
# Carrega o UNet do repo ID, usando o token
|
| 57 |
+
tuned_unet = UNet2DConditionModel.from_pretrained(
|
| 58 |
+
tuned_unet_repo_id,
|
| 59 |
+
torch_dtype=torch_dtype, # Carrega com mesmo dtype
|
| 60 |
+
token=hf_token # Usa o token para acessar repo privado
|
| 61 |
+
# low_cpu_mem_usage=False # Pode precisar desativar se der erro OOM aqui
|
| 62 |
+
)
|
| 63 |
+
print("UNet treinado carregado. Substituindo UNet no pipeline...")
|
| 64 |
+
pipe.unet = tuned_unet # A SUBSTITUIÇÃO
|
| 65 |
+
print("UNet substituído com sucesso.")
|
| 66 |
+
except Exception as unet_load_e:
|
| 67 |
+
loading_error_message = f"**<font color='red'>ERRO:</font>** Falha ao carregar UNet de `{tuned_unet_repo_id}` (Verifique token e repo). Usando UNet base. Erro: `{unet_load_e}`"
|
| 68 |
+
print(loading_error_message)
|
| 69 |
+
DESCRIPTION += "\n" + loading_error_message
|
| 70 |
+
# Continua com o UNet base se falhar
|
| 71 |
+
else:
|
| 72 |
+
# Se não há token, não pode carregar UNet privado
|
| 73 |
+
loading_error_message = f"**<font color='orange'>AVISO:</font>** HF_TOKEN não encontrado. Não é possível carregar UNet do repositório privado `{tuned_unet_repo_id}`. Usando UNet base."
|
| 74 |
+
print(loading_error_message)
|
| 75 |
+
DESCRIPTION += "\n" + loading_error_message
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
# Configura o scheduler (como antes)
|
| 79 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 80 |
+
print(f"Scheduler configurado para: {pipe.scheduler.__class__.__name__}")
|
| 81 |
+
|
| 82 |
+
print(f"Movendo pipeline final para o device: {device}")
|
| 83 |
+
pipe.to(device) # Move para o device APÓS substituir o UNet
|
| 84 |
+
print("Pipeline pronto no device.")
|
| 85 |
+
|
| 86 |
+
except Exception as e:
|
| 87 |
+
# Erro ao carregar o pipeline BASE
|
| 88 |
+
print(f"Erro CRÍTICO ao carregar o pipeline base de '{base_model_id}': {e}")
|
| 89 |
+
loading_error_message = f"**<font color='red'>ERRO CRÍTICO:</font>** Não foi possível carregar o pipeline base `{base_model_id}`. Erro: `{e}`."
|
| 90 |
+
DESCRIPTION += "\n" + loading_error_message
|
| 91 |
+
pipe = None
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# Função generate (sem alterações significativas)
|
| 95 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 96 |
+
if randomize_seed: seed = random.randint(0, MAX_SEED)
|
|
|
|
| 97 |
return seed
|
| 98 |
|
| 99 |
+
@spaces.GPU(duration=90)
|
| 100 |
def generate(
|
| 101 |
prompt: str,
|
| 102 |
negative_prompt: str = "",
|
| 103 |
+
use_negative_prompt: bool = True,
|
| 104 |
seed: int = 0,
|
| 105 |
width: int = 1024,
|
| 106 |
height: int = 1024,
|
| 107 |
+
guidance_scale: float = 7.0,
|
| 108 |
num_inference_steps: int = 25,
|
| 109 |
randomize_seed: bool = False,
|
|
|
|
| 110 |
progress=gr.Progress(track_tqdm=True),
|
| 111 |
):
|
| 112 |
+
if pipe is None: raise gr.Error(f"Pipeline não carregado. {loading_error_message}")
|
| 113 |
pipe.to(device)
|
| 114 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 115 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 116 |
+
if not use_negative_prompt: negative_prompt = None
|
| 117 |
+
options = {"prompt":prompt, "negative_prompt":negative_prompt, "width":width, "height":height, "guidance_scale":guidance_scale, "num_inference_steps":num_inference_steps, "generator":generator, "output_type":"pil"}
|
| 118 |
+
print(f"Gerando imagem com seed: {seed}, Steps: {num_inference_steps}, Guidance: {guidance_scale}")
|
| 119 |
+
start_gen_time = time.time()
|
| 120 |
+
try:
|
| 121 |
+
images = pipe(**options).images
|
| 122 |
+
print(f"Gerado {len(images)} imagem(s) em {time.time() - start_gen_time:.2f} segundos.")
|
| 123 |
+
return images, seed
|
| 124 |
+
except Exception as e:
|
| 125 |
+
print(f"Erro durante a geração: {e}")
|
| 126 |
+
raise gr.Error(f"Erro durante a geração: {e}")
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# Interface Gradio (sem alterações significativas)
|
| 130 |
+
examples = [ "photo of a futuristic city skyline at sunset, high detail", "an oil painting of a cute cat wearing a wizard hat", "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k", "An alien grasping a sign board contain word 'Flash', futuristic, neonpunk, detailed" ]
|
| 131 |
+
css = ".gradio-container { max-width: 800px !important; margin: 0 auto !important; } h1{ text-align:center }"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
with gr.Blocks(css=css) as demo:
|
| 133 |
+
gr.Markdown(f"""# SDXL Base com UNet Fine-tuned (`{tuned_unet_repo_id}`)
|
| 134 |
+
Base: `{base_model_id}`
|
| 135 |
{DESCRIPTION}""")
|
| 136 |
with gr.Group():
|
| 137 |
with gr.Row():
|
| 138 |
+
prompt = gr.Text(label="Prompt", show_label=False, max_lines=3, placeholder="Descreva a imagem...", container=False)
|
| 139 |
+
run_button = gr.Button("Gerar Imagem", variant="primary", scale=0)
|
| 140 |
+
result = gr.Gallery(label="Resultado", show_label=False, elem_id="gallery", columns=1, height=768)
|
| 141 |
+
with gr.Accordion("Opções Avançadas", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
with gr.Row():
|
| 143 |
+
use_negative_prompt = gr.Checkbox(label="Usar prompt negativo", value=True)
|
| 144 |
+
negative_prompt = gr.Text(label="Prompt Negativo", max_lines=3, lines=2, placeholder="O que NÃO ver...", value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", visible=True)
|
| 145 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 146 |
+
randomize_seed = gr.Checkbox(label="Seed Aleatória", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
with gr.Row():
|
| 148 |
+
width = gr.Slider(label="Largura", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024)
|
| 149 |
+
height = gr.Slider(label="Altura", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024)
|
| 150 |
+
with gr.Row():
|
| 151 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=20.0, step=0.5, value=7.0)
|
| 152 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, step=1, value=25)
|
| 153 |
+
gr.Examples(examples=examples, inputs=prompt, outputs=[result, seed], fn=generate, cache_examples=CACHE_EXAMPLES)
|
| 154 |
+
use_negative_prompt.change(fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False)
|
| 155 |
+
generate_inputs = [prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed]
|
| 156 |
+
gr.on(triggers=[prompt.submit, run_button.click], fn=generate, inputs=generate_inputs, outputs=[result, seed], api_name="generate_image")
|
| 157 |
+
|
| 158 |
+
# Lança a interface no ambiente Space
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
if __name__ == "__main__":
|
| 160 |
+
if pipe is not None:
|
| 161 |
+
print("Lançando interface Gradio no Space...")
|
| 162 |
+
demo.queue().launch() # Importante para Spaces
|
| 163 |
+
else:
|
| 164 |
+
print("ERRO CRÍTICO: Pipeline não carregado ou UNet não substituído corretamente. Lançando UI de erro.")
|
| 165 |
+
with gr.Blocks() as error_demo:
|
| 166 |
+
gr.Markdown(f"# Erro ao Carregar Modelo\n{DESCRIPTION}")
|
| 167 |
+
error_demo.queue().launch()
|