Spaces:
Runtime error
Runtime error
Minor enhancements (#11)
Browse files- Minor enhancements (8b19ca0f76ec2560a2f7fb5fe2c36d34757bab59)
Co-authored-by: msqrd <[email protected]>
app.py
CHANGED
|
@@ -1,8 +1,4 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import random
|
| 3 |
-
import uuid
|
| 4 |
-
import json
|
| 5 |
-
|
| 6 |
import gradio as gr
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image
|
|
@@ -10,8 +6,9 @@ import spaces
|
|
| 10 |
import torch
|
| 11 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 12 |
|
|
|
|
| 13 |
if not torch.cuda.is_available():
|
| 14 |
-
DESCRIPTION
|
| 15 |
|
| 16 |
MAX_SEED = np.iinfo(np.int32).max
|
| 17 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
|
@@ -21,15 +18,18 @@ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
|
| 21 |
|
| 22 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
if torch.cuda.is_available():
|
| 25 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 26 |
-
"sd-community/sdxl-flash",
|
| 27 |
-
torch_dtype=torch.float16,
|
| 28 |
-
use_safetensors=True,
|
| 29 |
-
add_watermarker=False
|
| 30 |
-
)
|
| 31 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 32 |
pipe.to("cuda")
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def save_image(img):
|
| 35 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
@@ -90,14 +90,15 @@ examples = [
|
|
| 90 |
|
| 91 |
css = '''
|
| 92 |
.gradio-container{max-width: 700px !important}
|
| 93 |
-
h1{text-align:
|
| 94 |
footer {
|
| 95 |
visibility: hidden
|
| 96 |
}
|
| 97 |
'''
|
| 98 |
with gr.Blocks(css=css) as demo:
|
| 99 |
-
gr.Markdown("""# SDXL Flash
|
| 100 |
-
### First Image processing takes time then images generate faster.
|
|
|
|
| 101 |
with gr.Group():
|
| 102 |
with gr.Row():
|
| 103 |
prompt = gr.Text(
|
|
|
|
| 1 |
+
import os, random, uuid, json
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
| 4 |
from PIL import Image
|
|
|
|
| 6 |
import torch
|
| 7 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 8 |
|
| 9 |
+
DESCRIPTION = None
|
| 10 |
if not torch.cuda.is_available():
|
| 11 |
+
DESCRIPTION = "\nRunning on CPU 🥶 This demo may not work on CPU."
|
| 12 |
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
|
|
|
| 18 |
|
| 19 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 20 |
|
| 21 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 22 |
+
"sd-community/sdxl-flash",
|
| 23 |
+
torch_dtype=torch.float16,
|
| 24 |
+
use_safetensors=True,
|
| 25 |
+
add_watermarker=False
|
| 26 |
+
)
|
| 27 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 28 |
+
|
| 29 |
if torch.cuda.is_available():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
pipe.to("cuda")
|
| 31 |
+
else:
|
| 32 |
+
pipe.to("cpu")
|
| 33 |
|
| 34 |
def save_image(img):
|
| 35 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
|
| 90 |
|
| 91 |
css = '''
|
| 92 |
.gradio-container{max-width: 700px !important}
|
| 93 |
+
h1{text-align:left}
|
| 94 |
footer {
|
| 95 |
visibility: hidden
|
| 96 |
}
|
| 97 |
'''
|
| 98 |
with gr.Blocks(css=css) as demo:
|
| 99 |
+
gr.Markdown(f"""# SDXL Flash
|
| 100 |
+
### First Image processing takes time then images generate faster.
|
| 101 |
+
{DESCRIPTION}""")
|
| 102 |
with gr.Group():
|
| 103 |
with gr.Row():
|
| 104 |
prompt = gr.Text(
|