Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from peft import PeftModel | |
| import torch | |
| # πΉ Load tokenizer and base model | |
| base_model_id = "deepseek-ai/deepseek-coder-1.3b-base" | |
| lora_model_id = "brijmansuriya/deepseek-lora" # β Your LoRA fine-tuned model repo | |
| tokenizer = AutoTokenizer.from_pretrained(lora_model_id, trust_remote_code=True) | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| base_model_id, | |
| device_map="auto", | |
| torch_dtype=torch.float16, | |
| trust_remote_code=True | |
| ) | |
| # πΉ Load LoRA adapter | |
| model = PeftModel.from_pretrained(base_model, lora_model_id) | |
| # πΉ Define the function | |
| def generate_code(prompt): | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=200, | |
| temperature=0.7, | |
| do_sample=True, | |
| top_p=0.95, | |
| ) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # πΉ Gradio UI | |
| demo = gr.Interface( | |
| fn=generate_code, | |
| inputs=gr.Textbox(label="Enter your coding prompt"), | |
| outputs=gr.Textbox(label="Generated Code"), | |
| title="π€ DeepSeek Code Generator (LoRA)", | |
| description="This app uses DeepSeek-Coder with Brijbhai's fine-tuned LoRA model to generate code from natural language prompts." | |
| ) | |
| demo.launch() | |