Spaces:
Runtime error
Runtime error
update
Browse files- .gitignore +1 -0
- README.md +5 -6
- app.py +449 -99
- constants/prompts.toml +17 -0
- date_iterator.sh +27 -0
- gen/gemini.py +142 -0
- gen/utils.py +37 -0
- outputs.json +0 -0
- paper/download.py +102 -0
- paper/parser.py +57 -0
- requirements.txt +9 -0
- utils.py +28 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
README.md
CHANGED
|
@@ -1,14 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
-
short_description: Explore papers with auto generated Q&As!
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Test Paperqa
|
| 3 |
+
emoji: π₯
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.20.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -1,12 +1,34 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
import copy
|
| 3 |
import datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
STYLE = """
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
}
|
| 11 |
|
| 12 |
.small-font{
|
|
@@ -16,7 +38,7 @@ STYLE = """
|
|
| 16 |
.small-font:hover {
|
| 17 |
font-size: 20px !important;
|
| 18 |
transition: font-size 0.3s ease-out;
|
| 19 |
-
transition-delay:
|
| 20 |
}
|
| 21 |
|
| 22 |
.group {
|
|
@@ -50,22 +72,207 @@ STYLE = """
|
|
| 50 |
border-radius: 0px;
|
| 51 |
}
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
display: none;
|
| 55 |
}
|
| 56 |
|
| 57 |
-
|
| 58 |
display: none;
|
| 59 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
"""
|
| 61 |
|
|
|
|
|
|
|
|
|
|
| 62 |
dataset_repo_id = "chansung/auto-paper-qa2"
|
|
|
|
|
|
|
| 63 |
ds = datasets.load_dataset(dataset_repo_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
title2qna = {}
|
| 66 |
date2qna = {}
|
| 67 |
longest_qans = 0
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
def count_nans(row):
|
| 70 |
count = 0
|
| 71 |
|
|
@@ -119,33 +326,33 @@ def set_paper(date, paper_title):
|
|
| 119 |
return (
|
| 120 |
gr.Markdown(f"# {selected_paper['title']}"), gr.Markdown(selected_paper["summary"]),
|
| 121 |
|
| 122 |
-
gr.Markdown(f"
|
| 123 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_answers:eli5']}"),
|
| 124 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_answers:expert']}"),
|
| 125 |
-
gr.Markdown(f"
|
| 126 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}"),
|
| 127 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}"),
|
| 128 |
-
gr.Markdown(f"
|
| 129 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}"),
|
| 130 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}"),
|
| 131 |
|
| 132 |
-
gr.Markdown(f"
|
| 133 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_answers:eli5']}"),
|
| 134 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_answers:expert']}"),
|
| 135 |
-
gr.Markdown(f"
|
| 136 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}"),
|
| 137 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}"),
|
| 138 |
-
gr.Markdown(f"
|
| 139 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}"),
|
| 140 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}"),
|
| 141 |
|
| 142 |
-
gr.Markdown(f"
|
| 143 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_answers:eli5']}"),
|
| 144 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_answers:expert']}"),
|
| 145 |
-
gr.Markdown(f"
|
| 146 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}"),
|
| 147 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}"),
|
| 148 |
-
gr.Markdown(f"
|
| 149 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}"),
|
| 150 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}"),
|
| 151 |
)
|
|
@@ -196,7 +403,7 @@ function search(searchIn, maxResults = 3) {{
|
|
| 196 |
let titles = {list(titles)};
|
| 197 |
|
| 198 |
for (const title of titles) {{ // Assuming 'titles' is an array defined elsewhere
|
| 199 |
-
if (results.length >
|
| 200 |
break;
|
| 201 |
}} else {{
|
| 202 |
if (title.toLowerCase().includes(searchIn.toLowerCase())) {{ // JavaScript's equivalent to Python's 'in'
|
|
@@ -206,7 +413,7 @@ function search(searchIn, maxResults = 3) {{
|
|
| 206 |
}}
|
| 207 |
|
| 208 |
// Handle UI elements (Explanation below)
|
| 209 |
-
const resultElements = [1,
|
| 210 |
return results[index - 1] || '';
|
| 211 |
}});
|
| 212 |
|
|
@@ -228,13 +435,74 @@ function search(searchIn, maxResults = 3) {{
|
|
| 228 |
document.getElementById('search_r3').style.display = 'block';
|
| 229 |
}}
|
| 230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
return resultElements;
|
| 232 |
}} else {{
|
| 233 |
document.getElementById('search_r1').style.display = 'none';
|
| 234 |
document.getElementById('search_r2').style.display = 'none';
|
| 235 |
document.getElementById('search_r3').style.display = 'none';
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
}}
|
| 239 |
}}
|
| 240 |
"""
|
|
@@ -251,7 +519,7 @@ def set_papers(date, title):
|
|
| 251 |
gr.Textbox("")
|
| 252 |
)
|
| 253 |
|
| 254 |
-
with gr.Blocks(css=STYLE) as demo:
|
| 255 |
gr.Markdown("# Let's explore papers with auto generated Q&As")
|
| 256 |
|
| 257 |
with gr.Column(elem_classes=["group"]):
|
|
@@ -272,108 +540,164 @@ with gr.Blocks(css=STYLE) as demo:
|
|
| 272 |
)
|
| 273 |
|
| 274 |
with gr.Column(elem_classes=["no-gap"]):
|
| 275 |
-
search_in = gr.Textbox("", placeholder="Enter keywords to search...",
|
| 276 |
search_r1 = gr.Button(visible=False, elem_id="search_r1", elem_classes=["no-radius"])
|
| 277 |
search_r2 = gr.Button(visible=False, elem_id="search_r2", elem_classes=["no-radius"])
|
| 278 |
search_r3 = gr.Button(visible=False, elem_id="search_r3", elem_classes=["no-radius"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
-
title = gr.Markdown(f"# {selected_paper['title']}")
|
| 281 |
-
summary = gr.Markdown(f"{selected_paper['summary']}", elem_classes=["small-font"])
|
| 282 |
-
|
| 283 |
-
with gr.Row():
|
| 284 |
-
with gr.Column(scale=7):
|
| 285 |
-
gr.Markdown("## Auto generated Questions & Answers")
|
| 286 |
-
|
| 287 |
-
exp_type = gr.Radio(choices=["ELI5", "Technical"], value="ELI5", elem_id="exp-type", scale=3)
|
| 288 |
-
|
| 289 |
-
# 1
|
| 290 |
-
with gr.Column(elem_classes=["group"], visible=True) as q_0:
|
| 291 |
-
basic_q_0 = gr.Markdown(f"## π {selected_paper['0_question']}")
|
| 292 |
-
basic_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_answers:eli5']}", elem_classes=["small-font"])
|
| 293 |
-
basic_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 294 |
-
|
| 295 |
-
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_0_0:
|
| 296 |
-
depth_q_0 = gr.Markdown(f"## ππ {selected_paper['0_additional_depth_q:follow up question']}")
|
| 297 |
-
depth_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
|
| 298 |
-
depth_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 299 |
-
|
| 300 |
-
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_0_1:
|
| 301 |
-
breath_q_0 = gr.Markdown(f"## ππ {selected_paper['0_additional_breath_q:follow up question']}")
|
| 302 |
-
breath_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
|
| 303 |
-
breath_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 304 |
-
|
| 305 |
-
# 2
|
| 306 |
-
with gr.Column(elem_classes=["group"], visible=True) as q_1:
|
| 307 |
-
basic_q_1 = gr.Markdown(f"## π {selected_paper['1_question']}")
|
| 308 |
-
basic_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_answers:eli5']}", elem_classes=["small-font"])
|
| 309 |
-
basic_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 310 |
-
|
| 311 |
-
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_1_0:
|
| 312 |
-
depth_q_1 = gr.Markdown(f"## ππ {selected_paper['1_additional_depth_q:follow up question']}")
|
| 313 |
-
depth_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
|
| 314 |
-
depth_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 315 |
-
|
| 316 |
-
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_1_1:
|
| 317 |
-
breath_q_1 = gr.Markdown(f"## ππ {selected_paper['1_additional_breath_q:follow up question']}")
|
| 318 |
-
breath_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
|
| 319 |
-
breath_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 320 |
-
|
| 321 |
-
# 3
|
| 322 |
-
with gr.Column(elem_classes=["group"], visible=True) as q_2:
|
| 323 |
-
basic_q_2 = gr.Markdown(f"## π {selected_paper['2_question']}")
|
| 324 |
-
basic_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_answers:eli5']}", elem_classes=["small-font"])
|
| 325 |
-
basic_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 326 |
-
|
| 327 |
-
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_2_0:
|
| 328 |
-
depth_q_2 = gr.Markdown(f"## ππ {selected_paper['2_additional_depth_q:follow up question']}")
|
| 329 |
-
depth_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
|
| 330 |
-
depth_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 331 |
-
|
| 332 |
-
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_2_1:
|
| 333 |
-
breath_q_2 = gr.Markdown(f"## ππ {selected_paper['2_additional_breath_q:follow up question']}")
|
| 334 |
-
breath_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
|
| 335 |
-
breath_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 336 |
|
| 337 |
gr.Markdown("The target papers are collected from [Hugging Face π€ Daily Papers](https://huggingface.co/papers) on a daily basis. "
|
| 338 |
"The entire data is generated by [Google's Gemini 1.0](https://deepmind.google/technologies/gemini/) Pro. "
|
| 339 |
"If you are curious how it is done, visit the [Auto Paper Q&A Generation project repository](https://github.com/deep-diver/auto-paper-analysis) "
|
| 340 |
"Also, the generated dataset is hosted on Hugging Face π€ Dataset repository as well([Link](https://huggingface.co/datasets/chansung/auto-paper-qa2)). ")
|
| 341 |
|
| 342 |
-
search_r1.click(
|
| 343 |
-
set_date,
|
| 344 |
-
search_r1,
|
| 345 |
-
date_dd
|
| 346 |
-
).then(
|
| 347 |
set_papers,
|
| 348 |
inputs=[date_dd, search_r1],
|
| 349 |
outputs=[papers_dd, search_in]
|
| 350 |
)
|
| 351 |
|
| 352 |
-
search_r2.click(
|
| 353 |
-
set_date,
|
| 354 |
-
search_r2,
|
| 355 |
-
date_dd
|
| 356 |
-
).then(
|
| 357 |
set_papers,
|
| 358 |
inputs=[date_dd, search_r2],
|
| 359 |
outputs=[papers_dd, search_in]
|
| 360 |
)
|
| 361 |
|
| 362 |
-
search_r3.click(
|
| 363 |
-
set_date,
|
| 364 |
-
search_r3,
|
| 365 |
-
date_dd
|
| 366 |
-
).then(
|
| 367 |
set_papers,
|
| 368 |
inputs=[date_dd, search_r3],
|
| 369 |
outputs=[papers_dd, search_in]
|
| 370 |
)
|
| 371 |
|
| 372 |
-
date_dd.
|
| 373 |
-
|
| 374 |
-
date_dd,
|
| 375 |
-
papers_dd
|
| 376 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
set_paper,
|
| 378 |
[date_dd, papers_dd],
|
| 379 |
[
|
|
@@ -413,7 +737,10 @@ with gr.Blocks(css=STYLE) as demo:
|
|
| 413 |
|
| 414 |
search_in.change(
|
| 415 |
inputs=[search_in],
|
| 416 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
| 417 |
js=UPDATE_SEARCH_RESULTS,
|
| 418 |
fn=None
|
| 419 |
)
|
|
@@ -428,4 +755,27 @@ with gr.Blocks(css=STYLE) as demo:
|
|
| 428 |
]
|
| 429 |
)
|
| 430 |
|
| 431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
import copy
|
| 4 |
import datasets
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
from datetime import datetime, timedelta
|
| 9 |
+
from datasets import Dataset
|
| 10 |
+
from huggingface_hub import HfApi
|
| 11 |
+
from huggingface_hub import create_repo
|
| 12 |
+
from huggingface_hub.utils import HfHubHTTPError
|
| 13 |
+
|
| 14 |
+
from paper.download import (
|
| 15 |
+
download_pdf_from_arxiv,
|
| 16 |
+
get_papers_from_hf_daily_papers,
|
| 17 |
+
get_papers_from_arxiv_ids
|
| 18 |
+
)
|
| 19 |
+
from paper.parser import extract_text_and_figures
|
| 20 |
+
from gen.gemini import get_basic_qa, get_deep_qa
|
| 21 |
+
import utils
|
| 22 |
+
|
| 23 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 24 |
|
| 25 |
STYLE = """
|
| 26 |
|
| 27 |
+
@media only screen and (max-width: 700px) {
|
| 28 |
+
.main {
|
| 29 |
+
width: 80% !important;
|
| 30 |
+
margin: 0 auto; /* Center the container */
|
| 31 |
+
}
|
| 32 |
}
|
| 33 |
|
| 34 |
.small-font{
|
|
|
|
| 38 |
.small-font:hover {
|
| 39 |
font-size: 20px !important;
|
| 40 |
transition: font-size 0.3s ease-out;
|
| 41 |
+
transition-delay: 1.5s;
|
| 42 |
}
|
| 43 |
|
| 44 |
.group {
|
|
|
|
| 72 |
border-radius: 0px;
|
| 73 |
}
|
| 74 |
|
| 75 |
+
.textbox-no-label > label > span {
|
| 76 |
+
display: none;
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
.exp-type > span {
|
| 80 |
display: none;
|
| 81 |
}
|
| 82 |
|
| 83 |
+
.conv-type > span {
|
| 84 |
display: none;
|
| 85 |
}
|
| 86 |
+
|
| 87 |
+
.conv-type .wrap:nth-child(3) {
|
| 88 |
+
width: 167px;
|
| 89 |
+
margin: auto;
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
button {
|
| 93 |
+
font-size: 10pt !important;
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
h3 {
|
| 97 |
+
font-size: 13pt !important;
|
| 98 |
+
}
|
| 99 |
"""
|
| 100 |
|
| 101 |
+
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
| 102 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 103 |
+
|
| 104 |
dataset_repo_id = "chansung/auto-paper-qa2"
|
| 105 |
+
request_arxiv_repo_id="chansung/requested-arxiv-ids-3"
|
| 106 |
+
|
| 107 |
ds = datasets.load_dataset(dataset_repo_id)
|
| 108 |
+
request_ds = datasets.load_dataset(request_arxiv_repo_id)
|
| 109 |
+
requested_arxiv_ids = []
|
| 110 |
+
for request_d in request_ds['train']:
|
| 111 |
+
arxiv_ids = request_d['Requested arXiv IDs']
|
| 112 |
+
requested_arxiv_ids = requested_arxiv_ids + arxiv_ids
|
| 113 |
+
requested_arxiv_ids_df = pd.DataFrame({'Requested arXiv IDs': requested_arxiv_ids})
|
| 114 |
|
| 115 |
title2qna = {}
|
| 116 |
date2qna = {}
|
| 117 |
longest_qans = 0
|
| 118 |
|
| 119 |
+
def filter_function(example, ids):
|
| 120 |
+
ids_e = example['Requested arXiv IDs']
|
| 121 |
+
for iid in ids:
|
| 122 |
+
if iid in ids_e:
|
| 123 |
+
ids_e.remove(iid)
|
| 124 |
+
example['Requested arXiv IDs'] = ids_e
|
| 125 |
+
|
| 126 |
+
print(example)
|
| 127 |
+
return example
|
| 128 |
+
|
| 129 |
+
def process_arxiv_ids(gemini_api, hf_repo_id, req_hf_repo_id, hf_token, how_many=10):
|
| 130 |
+
arxiv_ids = []
|
| 131 |
+
|
| 132 |
+
ds1 = datasets.load_dataset(req_hf_repo_id)
|
| 133 |
+
for d in ds1['train']:
|
| 134 |
+
req_arxiv_ids = d['Requested arXiv IDs']
|
| 135 |
+
if len(req_arxiv_ids) > 0 and req_arxiv_ids[0] != "top":
|
| 136 |
+
arxiv_ids = arxiv_ids + req_arxiv_ids
|
| 137 |
+
|
| 138 |
+
arxiv_ids = arxiv_ids[:how_many]
|
| 139 |
+
|
| 140 |
+
if arxiv_ids is not None and len(arxiv_ids) > 0:
|
| 141 |
+
print(f"1. Get metadata for the papers [{arxiv_ids}]")
|
| 142 |
+
papers = get_papers_from_arxiv_ids(arxiv_ids)
|
| 143 |
+
print("...DONE")
|
| 144 |
+
|
| 145 |
+
print("2. Generating QAs for the paper")
|
| 146 |
+
for paper in papers:
|
| 147 |
+
try:
|
| 148 |
+
title = paper['title']
|
| 149 |
+
target_date = paper['target_date']
|
| 150 |
+
abstract = paper['paper']['summary']
|
| 151 |
+
arxiv_id = paper['paper']['id']
|
| 152 |
+
authors = paper['paper']['authors']
|
| 153 |
+
|
| 154 |
+
print(f"...PROCESSING ON[{arxiv_id}, {title}]")
|
| 155 |
+
print(f"......Downloading the paper PDF")
|
| 156 |
+
filename = download_pdf_from_arxiv(arxiv_id)
|
| 157 |
+
print(f"......DONE")
|
| 158 |
+
|
| 159 |
+
print(f"......Extracting text and figures")
|
| 160 |
+
texts, figures = extract_text_and_figures(filename)
|
| 161 |
+
text =' '.join(texts)
|
| 162 |
+
print(f"......DONE")
|
| 163 |
+
|
| 164 |
+
print(f"......Generating the seed(basic) QAs")
|
| 165 |
+
qnas = get_basic_qa(text, gemini_api_key=gemini_api, trucate=30000)
|
| 166 |
+
qnas['title'] = title
|
| 167 |
+
qnas['abstract'] = abstract
|
| 168 |
+
qnas['authors'] = ','.join(authors)
|
| 169 |
+
qnas['arxiv_id'] = arxiv_id
|
| 170 |
+
qnas['target_date'] = target_date
|
| 171 |
+
qnas['full_text'] = text
|
| 172 |
+
print(f"......DONE")
|
| 173 |
+
|
| 174 |
+
print(f"......Generating the follow-up QAs")
|
| 175 |
+
qnas = get_deep_qa(text, qnas, gemini_api_key=gemini_api, trucate=30000)
|
| 176 |
+
del qnas["qna"]
|
| 177 |
+
print(f"......DONE")
|
| 178 |
+
|
| 179 |
+
print(f"......Exporting to HF Dataset repo at [{hf_repo_id}]")
|
| 180 |
+
utils.push_to_hf_hub(qnas, hf_repo_id, hf_token)
|
| 181 |
+
print(f"......DONE")
|
| 182 |
+
|
| 183 |
+
print(f"......Updating request arXiv HF Dataset repo at [{req_hf_repo_id}]")
|
| 184 |
+
ds1 = ds1['train'].map(
|
| 185 |
+
lambda example: filter_function(example, [arxiv_id])
|
| 186 |
+
).filter(
|
| 187 |
+
lambda example: len(example['Requested arXiv IDs']) > 0
|
| 188 |
+
)
|
| 189 |
+
ds1.push_to_hub(req_hf_repo_id, token=hf_token)
|
| 190 |
+
|
| 191 |
+
print(f"......DONE")
|
| 192 |
+
except Exception as e:
|
| 193 |
+
print(f".......failed due to exception {e}")
|
| 194 |
+
continue
|
| 195 |
+
|
| 196 |
+
HfApi(token=hf_token).restart_space(
|
| 197 |
+
repo_id="chansung/paper_qa", token=hf_token
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
def push_to_hf_hub(
|
| 201 |
+
df, repo_id, token, append=True
|
| 202 |
+
):
|
| 203 |
+
exist = False
|
| 204 |
+
ds = Dataset.from_pandas(df)
|
| 205 |
+
|
| 206 |
+
try:
|
| 207 |
+
create_repo(request_arxiv_repo_id, repo_type="dataset", token=hf_token)
|
| 208 |
+
except HfHubHTTPError as e:
|
| 209 |
+
exist = True
|
| 210 |
+
|
| 211 |
+
if exist and append:
|
| 212 |
+
existing_ds = datasets.load_dataset(repo_id)
|
| 213 |
+
ds = datasets.concatenate_datasets([existing_ds['train'], ds])
|
| 214 |
+
|
| 215 |
+
ds.push_to_hub(repo_id, token=token)
|
| 216 |
+
|
| 217 |
+
def _filter_duplicate_arxiv_ids(arxiv_ids_to_be_added):
|
| 218 |
+
ds1 = datasets.load_dataset("chansung/requested-arxiv-ids-3")
|
| 219 |
+
ds2 = datasets.load_dataset("chansung/auto-paper-qa2")
|
| 220 |
+
|
| 221 |
+
unique_arxiv_ids = set()
|
| 222 |
+
|
| 223 |
+
for d in ds1['train']:
|
| 224 |
+
arxiv_ids = d['Requested arXiv IDs']
|
| 225 |
+
unique_arxiv_ids = set(list(unique_arxiv_ids) + arxiv_ids)
|
| 226 |
+
|
| 227 |
+
for d in ds2['train']:
|
| 228 |
+
arxiv_id = d['arxiv_id']
|
| 229 |
+
unique_arxiv_ids.add(arxiv_id)
|
| 230 |
+
|
| 231 |
+
return list(set(arxiv_ids_to_be_added) - unique_arxiv_ids)
|
| 232 |
+
|
| 233 |
+
def _is_arxiv_id_valid(arxiv_id):
|
| 234 |
+
pattern = r"^\d{4}\.\d{5}$"
|
| 235 |
+
return bool(re.match(pattern, arxiv_id))
|
| 236 |
+
|
| 237 |
+
def _get_valid_arxiv_ids(arxiv_ids_str):
|
| 238 |
+
valid_arxiv_ids = []
|
| 239 |
+
invalid_arxiv_ids = []
|
| 240 |
+
|
| 241 |
+
for arxiv_id in arxiv_ids_str.split(","):
|
| 242 |
+
arxiv_id = arxiv_id.strip()
|
| 243 |
+
if _is_arxiv_id_valid(arxiv_id):
|
| 244 |
+
valid_arxiv_ids.append(arxiv_id)
|
| 245 |
+
else:
|
| 246 |
+
invalid_arxiv_ids.append(arxiv_id)
|
| 247 |
+
|
| 248 |
+
return valid_arxiv_ids, invalid_arxiv_ids
|
| 249 |
+
|
| 250 |
+
def add_arxiv_ids_to_queue(queue, arxiv_ids_str):
|
| 251 |
+
print(0)
|
| 252 |
+
valid_arxiv_ids, invalid_arxiv_ids = _get_valid_arxiv_ids(arxiv_ids_str)
|
| 253 |
+
print("01")
|
| 254 |
+
|
| 255 |
+
if len(invalid_arxiv_ids) > 0:
|
| 256 |
+
gr.Warning(f"found invalid arXiv ids as in {invalid_arxiv_ids}")
|
| 257 |
+
|
| 258 |
+
if len(valid_arxiv_ids) > 0:
|
| 259 |
+
valid_arxiv_ids = _filter_duplicate_arxiv_ids(valid_arxiv_ids)
|
| 260 |
+
|
| 261 |
+
if len(valid_arxiv_ids) > 0:
|
| 262 |
+
valid_arxiv_ids = [[arxiv_id] for arxiv_id in valid_arxiv_ids]
|
| 263 |
+
gr.Warning(f"Processing on [{valid_arxiv_ids}]. Other requested arXiv IDs not found on this list should be already processed or being processed...")
|
| 264 |
+
valid_arxiv_ids = pd.DataFrame({'Requested arXiv IDs': valid_arxiv_ids})
|
| 265 |
+
queue = pd.concat([queue, valid_arxiv_ids])
|
| 266 |
+
queue.reset_index(drop=True)
|
| 267 |
+
|
| 268 |
+
push_to_hf_hub(valid_arxiv_ids, request_arxiv_repo_id, hf_token)
|
| 269 |
+
else:
|
| 270 |
+
gr.Warning(f"All requested arXiv IDs are already processed or being processed...")
|
| 271 |
+
else:
|
| 272 |
+
gr.Warning(f"No valid arXiv IDs found...")
|
| 273 |
+
|
| 274 |
+
return queue
|
| 275 |
+
|
| 276 |
def count_nans(row):
|
| 277 |
count = 0
|
| 278 |
|
|
|
|
| 326 |
return (
|
| 327 |
gr.Markdown(f"# {selected_paper['title']}"), gr.Markdown(selected_paper["summary"]),
|
| 328 |
|
| 329 |
+
gr.Markdown(f"### π {selected_paper['0_question']}"),
|
| 330 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_answers:eli5']}"),
|
| 331 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_answers:expert']}"),
|
| 332 |
+
gr.Markdown(f"### ππ {selected_paper['0_additional_depth_q:follow up question']}"),
|
| 333 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}"),
|
| 334 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}"),
|
| 335 |
+
gr.Markdown(f"### ππ {selected_paper['0_additional_breath_q:follow up question']}"),
|
| 336 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}"),
|
| 337 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}"),
|
| 338 |
|
| 339 |
+
gr.Markdown(f"### π {selected_paper['1_question']}"),
|
| 340 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_answers:eli5']}"),
|
| 341 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_answers:expert']}"),
|
| 342 |
+
gr.Markdown(f"### ππ {selected_paper['1_additional_depth_q:follow up question']}"),
|
| 343 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}"),
|
| 344 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}"),
|
| 345 |
+
gr.Markdown(f"### ππ {selected_paper['1_additional_breath_q:follow up question']}"),
|
| 346 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}"),
|
| 347 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}"),
|
| 348 |
|
| 349 |
+
gr.Markdown(f"### π {selected_paper['2_question']}"),
|
| 350 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_answers:eli5']}"),
|
| 351 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_answers:expert']}"),
|
| 352 |
+
gr.Markdown(f"### ππ {selected_paper['2_additional_depth_q:follow up question']}"),
|
| 353 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}"),
|
| 354 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}"),
|
| 355 |
+
gr.Markdown(f"### ππ {selected_paper['2_additional_breath_q:follow up question']}"),
|
| 356 |
gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}"),
|
| 357 |
gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}"),
|
| 358 |
)
|
|
|
|
| 403 |
let titles = {list(titles)};
|
| 404 |
|
| 405 |
for (const title of titles) {{ // Assuming 'titles' is an array defined elsewhere
|
| 406 |
+
if (results.length > 10) {{
|
| 407 |
break;
|
| 408 |
}} else {{
|
| 409 |
if (title.toLowerCase().includes(searchIn.toLowerCase())) {{ // JavaScript's equivalent to Python's 'in'
|
|
|
|
| 413 |
}}
|
| 414 |
|
| 415 |
// Handle UI elements (Explanation below)
|
| 416 |
+
const resultElements = [1,2,3,4,5,6,7,8,9,10].map(index => {{
|
| 417 |
return results[index - 1] || '';
|
| 418 |
}});
|
| 419 |
|
|
|
|
| 435 |
document.getElementById('search_r3').style.display = 'block';
|
| 436 |
}}
|
| 437 |
|
| 438 |
+
if (resultElements[3] == '') {{
|
| 439 |
+
document.getElementById('search_r4').style.display = 'none';
|
| 440 |
+
}} else {{
|
| 441 |
+
document.getElementById('search_r4').style.display = 'block';
|
| 442 |
+
}}
|
| 443 |
+
|
| 444 |
+
if (resultElements[4] == '') {{
|
| 445 |
+
document.getElementById('search_r5').style.display = 'none';
|
| 446 |
+
}} else {{
|
| 447 |
+
document.getElementById('search_r5').style.display = 'block';
|
| 448 |
+
}}
|
| 449 |
+
|
| 450 |
+
if (resultElements[5] == '') {{
|
| 451 |
+
document.getElementById('search_r6').style.display = 'none';
|
| 452 |
+
}} else {{
|
| 453 |
+
document.getElementById('search_r6').style.display = 'block';
|
| 454 |
+
}}
|
| 455 |
+
|
| 456 |
+
if (resultElements[6] == '') {{
|
| 457 |
+
document.getElementById('search_r7').style.display = 'none';
|
| 458 |
+
}} else {{
|
| 459 |
+
document.getElementById('search_r7').style.display = 'block';
|
| 460 |
+
}}
|
| 461 |
+
|
| 462 |
+
if (resultElements[7] == '') {{
|
| 463 |
+
document.getElementById('search_r8').style.display = 'none';
|
| 464 |
+
}} else {{
|
| 465 |
+
document.getElementById('search_r8').style.display = 'block';
|
| 466 |
+
}}
|
| 467 |
+
|
| 468 |
+
if (resultElements[8] == '') {{
|
| 469 |
+
document.getElementById('search_r9').style.display = 'none';
|
| 470 |
+
}} else {{
|
| 471 |
+
document.getElementById('search_r9').style.display = 'block';
|
| 472 |
+
}}
|
| 473 |
+
|
| 474 |
+
if (resultElements[9] == '') {{
|
| 475 |
+
document.getElementById('search_r10').style.display = 'none';
|
| 476 |
+
}} else {{
|
| 477 |
+
document.getElementById('search_r10').style.display = 'block';
|
| 478 |
+
}}
|
| 479 |
+
|
| 480 |
return resultElements;
|
| 481 |
}} else {{
|
| 482 |
document.getElementById('search_r1').style.display = 'none';
|
| 483 |
document.getElementById('search_r2').style.display = 'none';
|
| 484 |
document.getElementById('search_r3').style.display = 'none';
|
| 485 |
+
document.getElementById('search_r4').style.display = 'none';
|
| 486 |
+
document.getElementById('search_r5').style.display = 'none';
|
| 487 |
+
document.getElementById('search_r6').style.display = 'none';
|
| 488 |
+
document.getElementById('search_r7').style.display = 'none';
|
| 489 |
+
document.getElementById('search_r8').style.display = 'none';
|
| 490 |
+
document.getElementById('search_r9').style.display = 'none';
|
| 491 |
+
document.getElementById('search_r10').style.display = 'none';
|
| 492 |
+
|
| 493 |
+
return ['', '', '', '', '', '', '', '', '', '']
|
| 494 |
+
}}
|
| 495 |
+
}}
|
| 496 |
+
"""
|
| 497 |
|
| 498 |
+
UPDATE_IF_TYPE = f"""
|
| 499 |
+
function chage_if_type(if_type) {{
|
| 500 |
+
if (if_type == 'Q&As') {{
|
| 501 |
+
document.getElementById('chat_block').style.display = 'none';
|
| 502 |
+
document.getElementById('qna_block').style.display = 'block';
|
| 503 |
+
}} else {{
|
| 504 |
+
document.getElementById('chat_block').style.display = 'block';
|
| 505 |
+
document.getElementById('qna_block').style.display = 'none';
|
| 506 |
}}
|
| 507 |
}}
|
| 508 |
"""
|
|
|
|
| 519 |
gr.Textbox("")
|
| 520 |
)
|
| 521 |
|
| 522 |
+
with gr.Blocks(css=STYLE, theme=gr.themes.Soft()) as demo:
|
| 523 |
gr.Markdown("# Let's explore papers with auto generated Q&As")
|
| 524 |
|
| 525 |
with gr.Column(elem_classes=["group"]):
|
|
|
|
| 540 |
)
|
| 541 |
|
| 542 |
with gr.Column(elem_classes=["no-gap"]):
|
| 543 |
+
search_in = gr.Textbox("", placeholder="Enter keywords to search...", elem_classes=["textbox-no-label"])
|
| 544 |
search_r1 = gr.Button(visible=False, elem_id="search_r1", elem_classes=["no-radius"])
|
| 545 |
search_r2 = gr.Button(visible=False, elem_id="search_r2", elem_classes=["no-radius"])
|
| 546 |
search_r3 = gr.Button(visible=False, elem_id="search_r3", elem_classes=["no-radius"])
|
| 547 |
+
search_r4 = gr.Button(visible=False, elem_id="search_r4", elem_classes=["no-radius"])
|
| 548 |
+
search_r5 = gr.Button(visible=False, elem_id="search_r5", elem_classes=["no-radius"])
|
| 549 |
+
search_r6 = gr.Button(visible=False, elem_id="search_r6", elem_classes=["no-radius"])
|
| 550 |
+
search_r7 = gr.Button(visible=False, elem_id="search_r7", elem_classes=["no-radius"])
|
| 551 |
+
search_r8 = gr.Button(visible=False, elem_id="search_r8", elem_classes=["no-radius"])
|
| 552 |
+
search_r9 = gr.Button(visible=False, elem_id="search_r9", elem_classes=["no-radius"])
|
| 553 |
+
search_r10 = gr.Button(visible=False, elem_id="search_r10", elem_classes=["no-radius"])
|
| 554 |
+
|
| 555 |
+
conv_type = gr.Radio(choices=["Q&As", "Chat"], value="Q&As", interactive=True, visible=False, elem_classes=["conv-type"])
|
| 556 |
+
|
| 557 |
+
with gr.Column(scale=7):
|
| 558 |
+
title = gr.Markdown(f"# {selected_paper['title']}")
|
| 559 |
+
summary = gr.Markdown(f"{selected_paper['summary']}", elem_classes=["small-font"])
|
| 560 |
+
|
| 561 |
+
with gr.Column(elem_id="chat_block", visible=False):
|
| 562 |
+
gr.Chatbot([("hello", "world"), ("how", "are you?")])
|
| 563 |
+
|
| 564 |
+
with gr.Column(elem_id="qna_block", visible=True):
|
| 565 |
+
with gr.Row():
|
| 566 |
+
with gr.Column(scale=7):
|
| 567 |
+
gr.Markdown("## Auto generated Questions & Answers")
|
| 568 |
+
|
| 569 |
+
exp_type = gr.Radio(choices=["ELI5", "Technical"], value="ELI5", elem_classes=["exp-type"], scale=3)
|
| 570 |
+
|
| 571 |
+
# 1
|
| 572 |
+
with gr.Column(elem_classes=["group"], visible=True) as q_0:
|
| 573 |
+
basic_q_0 = gr.Markdown(f"### π {selected_paper['0_question']}")
|
| 574 |
+
basic_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_answers:eli5']}", elem_classes=["small-font"])
|
| 575 |
+
basic_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 576 |
+
|
| 577 |
+
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_0_0:
|
| 578 |
+
depth_q_0 = gr.Markdown(f"### ππ {selected_paper['0_additional_depth_q:follow up question']}")
|
| 579 |
+
depth_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
|
| 580 |
+
depth_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 581 |
+
|
| 582 |
+
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_0_1:
|
| 583 |
+
breath_q_0 = gr.Markdown(f"### ππ {selected_paper['0_additional_breath_q:follow up question']}")
|
| 584 |
+
breath_q_eli5_0 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
|
| 585 |
+
breath_q_expert_0 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 586 |
+
|
| 587 |
+
# 2
|
| 588 |
+
with gr.Column(elem_classes=["group"], visible=True) as q_1:
|
| 589 |
+
basic_q_1 = gr.Markdown(f"### π {selected_paper['1_question']}")
|
| 590 |
+
basic_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_answers:eli5']}", elem_classes=["small-font"])
|
| 591 |
+
basic_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 592 |
+
|
| 593 |
+
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_1_0:
|
| 594 |
+
depth_q_1 = gr.Markdown(f"### ππ {selected_paper['1_additional_depth_q:follow up question']}")
|
| 595 |
+
depth_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
|
| 596 |
+
depth_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 597 |
+
|
| 598 |
+
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_1_1:
|
| 599 |
+
breath_q_1 = gr.Markdown(f"### ππ {selected_paper['1_additional_breath_q:follow up question']}")
|
| 600 |
+
breath_q_eli5_1 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
|
| 601 |
+
breath_q_expert_1 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 602 |
+
|
| 603 |
+
# 3
|
| 604 |
+
with gr.Column(elem_classes=["group"], visible=True) as q_2:
|
| 605 |
+
basic_q_2 = gr.Markdown(f"### π {selected_paper['2_question']}")
|
| 606 |
+
basic_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_answers:eli5']}", elem_classes=["small-font"])
|
| 607 |
+
basic_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 608 |
+
|
| 609 |
+
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_2_0:
|
| 610 |
+
depth_q_2 = gr.Markdown(f"### ππ {selected_paper['2_additional_depth_q:follow up question']}")
|
| 611 |
+
depth_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
|
| 612 |
+
depth_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 613 |
+
|
| 614 |
+
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_2_1:
|
| 615 |
+
breath_q_2 = gr.Markdown(f"### ππ {selected_paper['2_additional_breath_q:follow up question']}")
|
| 616 |
+
breath_q_eli5_2 = gr.Markdown(f"βͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
|
| 617 |
+
breath_q_expert_2 = gr.Markdown(f"βͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}", visible=False, elem_classes=["small-font"])
|
| 618 |
+
|
| 619 |
+
gr.Markdown("## Request any arXiv ids")
|
| 620 |
+
arxiv_queue = gr.Dataframe(
|
| 621 |
+
headers=["Requested arXiv IDs"], col_count=(1, "fixed"),
|
| 622 |
+
value=requested_arxiv_ids_df,
|
| 623 |
+
datatype=["str"],
|
| 624 |
+
interactive=False
|
| 625 |
+
)
|
| 626 |
+
|
| 627 |
+
arxiv_id_enter = gr.Textbox(placeholder="Enter comma separated arXiv IDs...", elem_classes=["textbox-no-label"])
|
| 628 |
+
arxiv_id_enter.submit(
|
| 629 |
+
add_arxiv_ids_to_queue,
|
| 630 |
+
[arxiv_queue, arxiv_id_enter],
|
| 631 |
+
arxiv_queue
|
| 632 |
+
)
|
| 633 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 634 |
|
| 635 |
gr.Markdown("The target papers are collected from [Hugging Face π€ Daily Papers](https://huggingface.co/papers) on a daily basis. "
|
| 636 |
"The entire data is generated by [Google's Gemini 1.0](https://deepmind.google/technologies/gemini/) Pro. "
|
| 637 |
"If you are curious how it is done, visit the [Auto Paper Q&A Generation project repository](https://github.com/deep-diver/auto-paper-analysis) "
|
| 638 |
"Also, the generated dataset is hosted on Hugging Face π€ Dataset repository as well([Link](https://huggingface.co/datasets/chansung/auto-paper-qa2)). ")
|
| 639 |
|
| 640 |
+
search_r1.click(set_date, search_r1, date_dd).then(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 641 |
set_papers,
|
| 642 |
inputs=[date_dd, search_r1],
|
| 643 |
outputs=[papers_dd, search_in]
|
| 644 |
)
|
| 645 |
|
| 646 |
+
search_r2.click(set_date, search_r2, date_dd).then(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 647 |
set_papers,
|
| 648 |
inputs=[date_dd, search_r2],
|
| 649 |
outputs=[papers_dd, search_in]
|
| 650 |
)
|
| 651 |
|
| 652 |
+
search_r3.click(set_date, search_r3, date_dd).then(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 653 |
set_papers,
|
| 654 |
inputs=[date_dd, search_r3],
|
| 655 |
outputs=[papers_dd, search_in]
|
| 656 |
)
|
| 657 |
|
| 658 |
+
search_r4.click(set_date, search_r4, date_dd).then(
|
| 659 |
+
set_papers,
|
| 660 |
+
inputs=[date_dd, search_r4],
|
| 661 |
+
outputs=[papers_dd, search_in]
|
| 662 |
+
)
|
| 663 |
+
|
| 664 |
+
search_r5.click(set_date, search_r5, date_dd).then(
|
| 665 |
+
set_papers,
|
| 666 |
+
inputs=[date_dd, search_r5],
|
| 667 |
+
outputs=[papers_dd, search_in]
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
search_r6.click(set_date, search_r6, date_dd).then(
|
| 671 |
+
set_papers,
|
| 672 |
+
inputs=[date_dd, search_r6],
|
| 673 |
+
outputs=[papers_dd, search_in]
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
search_r7.click(set_date, search_r7, date_dd).then(
|
| 677 |
+
set_papers,
|
| 678 |
+
inputs=[date_dd, search_r7],
|
| 679 |
+
outputs=[papers_dd, search_in]
|
| 680 |
+
)
|
| 681 |
+
|
| 682 |
+
search_r8.click(set_date, search_r8, date_dd).then(
|
| 683 |
+
set_papers,
|
| 684 |
+
inputs=[date_dd, search_r8],
|
| 685 |
+
outputs=[papers_dd, search_in]
|
| 686 |
+
)
|
| 687 |
+
|
| 688 |
+
search_r9.click(set_date, search_r9, date_dd).then(
|
| 689 |
+
set_papers,
|
| 690 |
+
inputs=[date_dd, search_r9],
|
| 691 |
+
outputs=[papers_dd, search_in]
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
search_r10.click(set_date, search_r10, date_dd).then(
|
| 695 |
+
set_papers,
|
| 696 |
+
inputs=[date_dd, search_r10],
|
| 697 |
+
outputs=[papers_dd, search_in]
|
| 698 |
+
)
|
| 699 |
+
|
| 700 |
+
date_dd.input(get_papers, date_dd, papers_dd).then(
|
| 701 |
set_paper,
|
| 702 |
[date_dd, papers_dd],
|
| 703 |
[
|
|
|
|
| 737 |
|
| 738 |
search_in.change(
|
| 739 |
inputs=[search_in],
|
| 740 |
+
outputs=[
|
| 741 |
+
search_r1, search_r2, search_r3, search_r4, search_r5,
|
| 742 |
+
search_r6, search_r7, search_r8, search_r9, search_r10
|
| 743 |
+
],
|
| 744 |
js=UPDATE_SEARCH_RESULTS,
|
| 745 |
fn=None
|
| 746 |
)
|
|
|
|
| 755 |
]
|
| 756 |
)
|
| 757 |
|
| 758 |
+
conv_type.select(
|
| 759 |
+
inputs=[conv_type],
|
| 760 |
+
js=UPDATE_IF_TYPE,
|
| 761 |
+
outputs=None,
|
| 762 |
+
fn=None
|
| 763 |
+
)
|
| 764 |
+
|
| 765 |
+
start_date = datetime.now() + timedelta(minutes=1)
|
| 766 |
+
scheduler = BackgroundScheduler()
|
| 767 |
+
scheduler.add_job(
|
| 768 |
+
process_arxiv_ids,
|
| 769 |
+
trigger='interval',
|
| 770 |
+
seconds=3600,
|
| 771 |
+
args=[
|
| 772 |
+
gemini_api_key,
|
| 773 |
+
dataset_repo_id,
|
| 774 |
+
request_arxiv_repo_id,
|
| 775 |
+
hf_token
|
| 776 |
+
],
|
| 777 |
+
start_date=start_date
|
| 778 |
+
)
|
| 779 |
+
scheduler.start()
|
| 780 |
+
|
| 781 |
+
demo.launch(share=True, debug=True)
|
constants/prompts.toml
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[basic_qa]
|
| 2 |
+
prompt = """
|
| 3 |
+
come up with the 6 questions and answers that could be commonly asked by people about the following paper.
|
| 4 |
+
There should be two types of answers included, one for expert and the other for ELI5.
|
| 5 |
+
Your response should be recorded in a JSON format as ```json{"title": text, "summary": text, "qna": [{"question": "answers": {"eli5": text, "expert": text}}, ...]}```
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
[deep_qa]
|
| 9 |
+
prompt = """
|
| 10 |
+
Paper title: $title
|
| 11 |
+
Previous question: $previous_question
|
| 12 |
+
The answer on the previous question: $previous_answer
|
| 13 |
+
|
| 14 |
+
Based on the previous question and answer above, and based on the paper content below, suggest follow-up question and answers in $tone manner.
|
| 15 |
+
There should be two types of answers included, one for expert and the other for ELI5.
|
| 16 |
+
Your response should be recorded in a JSON format as ```json{"follow up question": text, "answers": {"eli5": text, "expert": text}}```
|
| 17 |
+
"""
|
date_iterator.sh
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Set start and end dates (format YYYY-MM-DD)
|
| 4 |
+
start_date=$1
|
| 5 |
+
end_date=$2
|
| 6 |
+
hf_repo_id=$3
|
| 7 |
+
|
| 8 |
+
# Convert dates into seconds since epoch (for easier calculations)
|
| 9 |
+
start_seconds=$(date -j -f "%Y-%m-%d" "$start_date" "+%s")
|
| 10 |
+
end_seconds=$(date -j -f "%Y-%m-%d" "$end_date" "+%s")
|
| 11 |
+
|
| 12 |
+
# Iterate through dates
|
| 13 |
+
current_seconds=$start_seconds
|
| 14 |
+
while [[ $current_seconds -le $end_seconds ]]; do
|
| 15 |
+
current_date=$(date -j -r $current_seconds "+%Y-%m-%d")
|
| 16 |
+
|
| 17 |
+
# Replace with your actual program execution
|
| 18 |
+
echo "Running program for date: $current_date"
|
| 19 |
+
python app.py --target-date $current_date \
|
| 20 |
+
--gemini-api $GEMINI_API_KEY \
|
| 21 |
+
--hf-token $HF_ACCESS_TOKEN \
|
| 22 |
+
--hf-repo-id $hf_repo_id \
|
| 23 |
+
--hf-daily-papers
|
| 24 |
+
|
| 25 |
+
current_seconds=$((current_seconds + 86400)) # Add 1 day (86400 seconds)
|
| 26 |
+
done
|
| 27 |
+
|
gen/gemini.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ast
|
| 2 |
+
import copy
|
| 3 |
+
import toml
|
| 4 |
+
from string import Template
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from flatdict import FlatDict
|
| 7 |
+
import google.generativeai as genai
|
| 8 |
+
|
| 9 |
+
from gen.utils import parse_first_json_snippet
|
| 10 |
+
|
| 11 |
+
def determine_model_name(given_image=None):
|
| 12 |
+
if given_image is None:
|
| 13 |
+
return "gemini-pro"
|
| 14 |
+
else:
|
| 15 |
+
return "gemini-pro-vision"
|
| 16 |
+
|
| 17 |
+
def construct_image_part(given_image):
|
| 18 |
+
return {
|
| 19 |
+
"mime_type": "image/jpeg",
|
| 20 |
+
"data": given_image
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
def call_gemini(prompt="", API_KEY=None, given_text=None, given_image=None, generation_config=None, safety_settings=None):
|
| 24 |
+
genai.configure(api_key=API_KEY)
|
| 25 |
+
|
| 26 |
+
if generation_config is None:
|
| 27 |
+
generation_config = {
|
| 28 |
+
"temperature": 0.8,
|
| 29 |
+
"top_p": 1,
|
| 30 |
+
"top_k": 32,
|
| 31 |
+
"max_output_tokens": 4096,
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
if safety_settings is None:
|
| 35 |
+
safety_settings = [
|
| 36 |
+
{
|
| 37 |
+
"category": "HARM_CATEGORY_HARASSMENT",
|
| 38 |
+
"threshold": "BLOCK_NONE"
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"category": "HARM_CATEGORY_HATE_SPEECH",
|
| 42 |
+
"threshold": "BLOCK_NONE"
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
| 46 |
+
"threshold": "BLOCK_NONE"
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
| 50 |
+
"threshold": "BLOCK_NONE"
|
| 51 |
+
},
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
model_name = determine_model_name(given_image)
|
| 55 |
+
model = genai.GenerativeModel(model_name=model_name,
|
| 56 |
+
generation_config=generation_config,
|
| 57 |
+
safety_settings=safety_settings)
|
| 58 |
+
|
| 59 |
+
USER_PROMPT = prompt
|
| 60 |
+
if given_text is not None:
|
| 61 |
+
USER_PROMPT += f"""{prompt}
|
| 62 |
+
------------------------------------------------
|
| 63 |
+
{given_text}
|
| 64 |
+
"""
|
| 65 |
+
prompt_parts = [USER_PROMPT]
|
| 66 |
+
if given_image is not None:
|
| 67 |
+
prompt_parts.append(construct_image_part(given_image))
|
| 68 |
+
|
| 69 |
+
response = model.generate_content(prompt_parts)
|
| 70 |
+
return response.text
|
| 71 |
+
|
| 72 |
+
def try_out(prompt, given_text, gemini_api_key, given_image=None, retry_num=5):
|
| 73 |
+
qna_json = None
|
| 74 |
+
cur_retry = 0
|
| 75 |
+
|
| 76 |
+
while qna_json is None and cur_retry < retry_num:
|
| 77 |
+
try:
|
| 78 |
+
qna = call_gemini(
|
| 79 |
+
prompt=prompt,
|
| 80 |
+
given_text=given_text,
|
| 81 |
+
given_image=given_image,
|
| 82 |
+
API_KEY=gemini_api_key
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
qna_json = parse_first_json_snippet(qna)
|
| 86 |
+
except Exception as e:
|
| 87 |
+
cur_retry = cur_retry + 1
|
| 88 |
+
print(f"......retry {e}")
|
| 89 |
+
|
| 90 |
+
return qna_json
|
| 91 |
+
|
| 92 |
+
def get_basic_qa(text, gemini_api_key, trucate=7000):
|
| 93 |
+
prompts = toml.load(Path('.') / 'constants' / 'prompts.toml')
|
| 94 |
+
basic_qa = try_out(prompts['basic_qa']['prompt'], text[:trucate], gemini_api_key=gemini_api_key)
|
| 95 |
+
return basic_qa
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_deep_qa(text, basic_qa, gemini_api_key, trucate=7000):
|
| 99 |
+
prompts = toml.load(Path('.') / 'constants' / 'prompts.toml')
|
| 100 |
+
|
| 101 |
+
title = basic_qa['title']
|
| 102 |
+
qnas = copy.deepcopy(basic_qa['qna'])
|
| 103 |
+
|
| 104 |
+
for idx, qna in enumerate(qnas):
|
| 105 |
+
q = qna['question']
|
| 106 |
+
a_expert = qna['answers']['expert']
|
| 107 |
+
|
| 108 |
+
depth_search_prompt = Template(prompts['deep_qa']['prompt']).substitute(
|
| 109 |
+
title=title, previous_question=q, previous_answer=a_expert, tone="in-depth"
|
| 110 |
+
)
|
| 111 |
+
breath_search_prompt = Template(prompts['deep_qa']['prompt']).substitute(
|
| 112 |
+
title=title, previous_question=q, previous_answer=a_expert, tone="broad"
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
depth_search_response = {}
|
| 116 |
+
breath_search_response = {}
|
| 117 |
+
|
| 118 |
+
while 'follow up question' not in depth_search_response or \
|
| 119 |
+
'answers' not in depth_search_response or \
|
| 120 |
+
'eli5' not in depth_search_response['answers'] or \
|
| 121 |
+
'expert' not in depth_search_response['answers']:
|
| 122 |
+
depth_search_response = try_out(depth_search_prompt, text[:trucate], gemini_api_key=gemini_api_key)
|
| 123 |
+
|
| 124 |
+
while 'follow up question' not in breath_search_response or \
|
| 125 |
+
'answers' not in breath_search_response or \
|
| 126 |
+
'eli5' not in breath_search_response['answers'] or \
|
| 127 |
+
'expert' not in breath_search_response['answers']:
|
| 128 |
+
breath_search_response = try_out(breath_search_prompt, text[:trucate], gemini_api_key=gemini_api_key)
|
| 129 |
+
|
| 130 |
+
if depth_search_response is not None:
|
| 131 |
+
qna['additional_depth_q'] = depth_search_response
|
| 132 |
+
if breath_search_response is not None:
|
| 133 |
+
qna['additional_breath_q'] = breath_search_response
|
| 134 |
+
|
| 135 |
+
qna = FlatDict(qna)
|
| 136 |
+
qna_tmp = copy.deepcopy(qna)
|
| 137 |
+
for k in qna_tmp:
|
| 138 |
+
value = qna.pop(k)
|
| 139 |
+
qna[f'{idx}_{k}'] = value
|
| 140 |
+
basic_qa.update(ast.literal_eval(str(qna)))
|
| 141 |
+
|
| 142 |
+
return basic_qa
|
gen/utils.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
def find_json_snippet(raw_snippet):
|
| 4 |
+
json_parsed_string = None
|
| 5 |
+
|
| 6 |
+
json_start_index = raw_snippet.find('{')
|
| 7 |
+
json_end_index = raw_snippet.rfind('}')
|
| 8 |
+
|
| 9 |
+
if json_start_index >= 0 and json_end_index >= 0:
|
| 10 |
+
json_snippet = raw_snippet[json_start_index:json_end_index+1]
|
| 11 |
+
try:
|
| 12 |
+
json_parsed_string = json.loads(json_snippet, strict=False)
|
| 13 |
+
except:
|
| 14 |
+
raise ValueError('......failed to parse string into JSON format')
|
| 15 |
+
else:
|
| 16 |
+
raise ValueError('......No JSON code snippet found in string.')
|
| 17 |
+
|
| 18 |
+
return json_parsed_string
|
| 19 |
+
|
| 20 |
+
def parse_first_json_snippet(snippet):
|
| 21 |
+
json_parsed_string = None
|
| 22 |
+
|
| 23 |
+
if isinstance(snippet, list):
|
| 24 |
+
for snippet_piece in snippet:
|
| 25 |
+
try:
|
| 26 |
+
json_parsed_string = find_json_snippet(snippet_piece)
|
| 27 |
+
return json_parsed_string
|
| 28 |
+
except:
|
| 29 |
+
pass
|
| 30 |
+
else:
|
| 31 |
+
try:
|
| 32 |
+
json_parsed_string = find_json_snippet(snippet)
|
| 33 |
+
except Exception as e:
|
| 34 |
+
print(e)
|
| 35 |
+
raise ValueError()
|
| 36 |
+
|
| 37 |
+
return json_parsed_string
|
outputs.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
paper/download.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import json
|
| 3 |
+
import requests
|
| 4 |
+
import datetime
|
| 5 |
+
from datetime import date
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
import xml.etree.ElementTree as ET
|
| 8 |
+
from requests.exceptions import HTTPError
|
| 9 |
+
|
| 10 |
+
def _get_today():
|
| 11 |
+
return str(date.today())
|
| 12 |
+
|
| 13 |
+
def _download_pdf_from_arxiv(filename):
|
| 14 |
+
url = f'https://arxiv.org/pdf/{filename}'
|
| 15 |
+
response = requests.get(url)
|
| 16 |
+
if response.status_code == 200:
|
| 17 |
+
return response.content
|
| 18 |
+
else:
|
| 19 |
+
raise Exception(f"Failed to download pdf for arXiv id {filename}")
|
| 20 |
+
|
| 21 |
+
def download_pdf_from_arxiv(arxiv_id):
|
| 22 |
+
filename = f"{arxiv_id}.pdf"
|
| 23 |
+
pdf_content = _download_pdf_from_arxiv(filename)
|
| 24 |
+
|
| 25 |
+
# Save the pdf content to a file
|
| 26 |
+
with open(filename, "wb") as f:
|
| 27 |
+
f.write(pdf_content)
|
| 28 |
+
|
| 29 |
+
return filename
|
| 30 |
+
|
| 31 |
+
def _get_papers_from_hf_daily_papers(target_date):
|
| 32 |
+
if target_date is None:
|
| 33 |
+
target_date = _get_today()
|
| 34 |
+
print(f"target_date is not set => scrap today's papers [{target_date}]")
|
| 35 |
+
url = f"https://huggingface.co/api/daily_papers?date={target_date}"
|
| 36 |
+
|
| 37 |
+
response = requests.get(url)
|
| 38 |
+
|
| 39 |
+
if response.status_code == 200:
|
| 40 |
+
return target_date, response.text
|
| 41 |
+
else:
|
| 42 |
+
raise HTTPError(f"Error fetching data. Status code: {response.status_code}")
|
| 43 |
+
|
| 44 |
+
def get_papers_from_hf_daily_papers(target_date):
|
| 45 |
+
target_date, results = _get_papers_from_hf_daily_papers(target_date)
|
| 46 |
+
results = json.loads(results)
|
| 47 |
+
for result in results:
|
| 48 |
+
result["target_date"] = target_date
|
| 49 |
+
return target_date, results
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def _get_paper_xml_by_arxiv_id(arxiv_id):
|
| 53 |
+
url = f"http://export.arxiv.org/api/query?search_query=id:{arxiv_id}&start=0&max_results=1"
|
| 54 |
+
return requests.get(url)
|
| 55 |
+
|
| 56 |
+
def _is_arxiv_id_valid(arxiv_id):
|
| 57 |
+
pattern = r"^\d{4}\.\d{5}$"
|
| 58 |
+
return bool(re.match(pattern, arxiv_id))
|
| 59 |
+
|
| 60 |
+
def _get_paper_metadata_by_arxiv_id(response):
|
| 61 |
+
root = ET.fromstring(response.content)
|
| 62 |
+
|
| 63 |
+
# Example: Extracting title, authors, and abstract
|
| 64 |
+
title = root.find('{http://www.w3.org/2005/Atom}entry/{http://www.w3.org/2005/Atom}title').text
|
| 65 |
+
authors = [author.find('{http://www.w3.org/2005/Atom}name').text for author in root.findall('{http://www.w3.org/2005/Atom}entry/{http://www.w3.org/2005/Atom}author')]
|
| 66 |
+
abstract = root.find('{http://www.w3.org/2005/Atom}entry/{http://www.w3.org/2005/Atom}summary').text
|
| 67 |
+
target_date = root.find('{http://www.w3.org/2005/Atom}entry/{http://www.w3.org/2005/Atom}published').text
|
| 68 |
+
|
| 69 |
+
return title, authors, abstract, target_date
|
| 70 |
+
|
| 71 |
+
def get_papers_from_arxiv_ids(arxiv_ids):
|
| 72 |
+
results = []
|
| 73 |
+
|
| 74 |
+
for arxiv_id in arxiv_ids:
|
| 75 |
+
print(arxiv_id)
|
| 76 |
+
if _is_arxiv_id_valid(arxiv_id):
|
| 77 |
+
try:
|
| 78 |
+
xml_data = _get_paper_xml_by_arxiv_id(arxiv_id)
|
| 79 |
+
title, authors, abstract, target_date = _get_paper_metadata_by_arxiv_id(xml_data)
|
| 80 |
+
|
| 81 |
+
datetime_obj = datetime.strptime(target_date, "%Y-%m-%dT%H:%M:%SZ")
|
| 82 |
+
formatted_date = datetime_obj.strftime("%Y-%m-%d")
|
| 83 |
+
|
| 84 |
+
results.append(
|
| 85 |
+
{
|
| 86 |
+
"title": title,
|
| 87 |
+
"target_date": formatted_date,
|
| 88 |
+
"paper": {
|
| 89 |
+
"summary": abstract,
|
| 90 |
+
"id": arxiv_id,
|
| 91 |
+
"authors" : authors,
|
| 92 |
+
}
|
| 93 |
+
}
|
| 94 |
+
)
|
| 95 |
+
except:
|
| 96 |
+
print("......something wrong happend when downloading metadata")
|
| 97 |
+
print("......this usually happens when you try out the today's published paper")
|
| 98 |
+
continue
|
| 99 |
+
else:
|
| 100 |
+
print(f"......not a valid arXiv ID[{arxiv_id}]")
|
| 101 |
+
|
| 102 |
+
return results
|
paper/parser.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import fitz
|
| 3 |
+
import PyPDF2
|
| 4 |
+
|
| 5 |
+
def extract_text_and_figures(pdf_path):
|
| 6 |
+
"""
|
| 7 |
+
Extracts text and figures from a PDF file.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
pdf_path (str): The path to the PDF file.
|
| 11 |
+
|
| 12 |
+
Returns:
|
| 13 |
+
tuple: A tuple containing two lists:
|
| 14 |
+
* A list of extracted text blocks.
|
| 15 |
+
* A list of extracted figures (as bytes).
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
texts = []
|
| 19 |
+
figures = []
|
| 20 |
+
|
| 21 |
+
# Open the PDF using PyMuPDF (fitz) for image extraction
|
| 22 |
+
doc = fitz.open(pdf_path)
|
| 23 |
+
for page_num, page in enumerate(doc):
|
| 24 |
+
text = page.get_text("text") # Extract text as plain text
|
| 25 |
+
texts.append(text)
|
| 26 |
+
|
| 27 |
+
# Process images on the page
|
| 28 |
+
image_list = page.get_images()
|
| 29 |
+
for image_index, img in enumerate(image_list):
|
| 30 |
+
xref = img[0] # Image XREF
|
| 31 |
+
pix = fitz.Pixmap(doc, xref) # Create Pixmap image
|
| 32 |
+
|
| 33 |
+
# Save image in desired format (here, PNG)
|
| 34 |
+
if pix.n < 5: # Grayscale or RGB
|
| 35 |
+
img_bytes = pix.tobytes("png")
|
| 36 |
+
else: # CMYK: Convert to RGB first
|
| 37 |
+
pix = fitz.Pixmap(fitz.csRGB, pix)
|
| 38 |
+
img_bytes = pix.tobytes("png")
|
| 39 |
+
|
| 40 |
+
figures.append(img_bytes)
|
| 41 |
+
|
| 42 |
+
# Extract additional text using PyPDF2 (in case fitz didn't get everything)
|
| 43 |
+
with open(pdf_path, 'rb') as pdf_file:
|
| 44 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 45 |
+
for page_num in range(len(pdf_reader.pages)):
|
| 46 |
+
page = pdf_reader.pages[page_num]
|
| 47 |
+
text = page.extract_text()
|
| 48 |
+
texts.append(text)
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
os.remove(pdf_path)
|
| 52 |
+
except FileNotFoundError:
|
| 53 |
+
print(f"File '{pdf_path}' not found.")
|
| 54 |
+
except PermissionError:
|
| 55 |
+
print(f"Unable to remove '{pdf_path}'. Check permissions.")
|
| 56 |
+
|
| 57 |
+
return texts, figures
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
google-generativeai
|
| 2 |
+
pypdf2
|
| 3 |
+
PyMuPDF
|
| 4 |
+
gradio
|
| 5 |
+
requests
|
| 6 |
+
toml
|
| 7 |
+
datasets
|
| 8 |
+
flatdict
|
| 9 |
+
APScheduler
|
utils.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import datasets
|
| 3 |
+
from datasets import Dataset
|
| 4 |
+
from huggingface_hub import create_repo
|
| 5 |
+
from huggingface_hub.utils import HfHubHTTPError
|
| 6 |
+
|
| 7 |
+
def push_to_hf_hub(
|
| 8 |
+
qnas, repo_id, token, append=True
|
| 9 |
+
):
|
| 10 |
+
print(1)
|
| 11 |
+
exist = False
|
| 12 |
+
df = pd.DataFrame([qnas])
|
| 13 |
+
ds = Dataset.from_pandas(df)
|
| 14 |
+
ds = ds.cast_column("target_date", datasets.features.Value("timestamp[s]"))
|
| 15 |
+
|
| 16 |
+
print(2)
|
| 17 |
+
try:
|
| 18 |
+
create_repo(repo_id, repo_type="dataset", token=token)
|
| 19 |
+
except HfHubHTTPError as e:
|
| 20 |
+
exist = True
|
| 21 |
+
|
| 22 |
+
if exist and append:
|
| 23 |
+
print(3)
|
| 24 |
+
existing_ds = datasets.load_dataset(repo_id)
|
| 25 |
+
ds = datasets.concatenate_datasets([existing_ds['train'], ds])
|
| 26 |
+
|
| 27 |
+
print(4)
|
| 28 |
+
ds.push_to_hub(repo_id, token=token)
|