Spaces:
Runtime error
Runtime error
set intra op threads (#5)
Browse files- set intra op threads (7e156dc8b9521e9a3d42abe2727a9272891ca273)
Co-authored-by: Sayak Paul <[email protected]>
app.py
CHANGED
|
@@ -1,31 +1,36 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
|
| 3 |
-
import sys
|
| 4 |
import csv
|
| 5 |
-
import
|
|
|
|
|
|
|
| 6 |
import cv2
|
| 7 |
-
|
| 8 |
import matplotlib.pyplot as plt
|
|
|
|
| 9 |
import onnxruntime as ort
|
|
|
|
| 10 |
|
| 11 |
ade_palette = []
|
| 12 |
labels_list = []
|
| 13 |
|
| 14 |
csv.field_size_limit(sys.maxsize)
|
| 15 |
|
| 16 |
-
with open(r
|
| 17 |
for line in fp:
|
| 18 |
labels_list.append(line[:-1])
|
| 19 |
|
| 20 |
-
with open(r
|
| 21 |
for line in fp:
|
| 22 |
-
|
| 23 |
-
|
| 24 |
|
| 25 |
colormap = np.asarray(ade_palette)
|
| 26 |
|
| 27 |
-
model_filename =
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
def label_to_color_image(label):
|
|
@@ -37,6 +42,7 @@ def label_to_color_image(label):
|
|
| 37 |
|
| 38 |
return colormap[label]
|
| 39 |
|
|
|
|
| 40 |
def draw_plot(pred_img, seg):
|
| 41 |
fig = plt.figure(figsize=(20, 15))
|
| 42 |
|
|
@@ -44,7 +50,7 @@ def draw_plot(pred_img, seg):
|
|
| 44 |
|
| 45 |
plt.subplot(grid_spec[0])
|
| 46 |
plt.imshow(pred_img)
|
| 47 |
-
plt.axis(
|
| 48 |
|
| 49 |
LABEL_NAMES = np.asarray(labels_list)
|
| 50 |
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
|
@@ -59,19 +65,20 @@ def draw_plot(pred_img, seg):
|
|
| 59 |
ax.tick_params(width=0.0, labelsize=25)
|
| 60 |
return fig
|
| 61 |
|
|
|
|
| 62 |
def sepia(input_img):
|
| 63 |
img = cv2.imread(input_img)
|
| 64 |
img = cv2.resize(img, (640, 640)).astype(np.float32)
|
| 65 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 66 |
img_batch = np.expand_dims(img, axis=0)
|
| 67 |
img_batch = np.transpose(img_batch, (0, 3, 1, 2))
|
| 68 |
-
|
| 69 |
logits = sess.run(None, {"pixel_values": img_batch})[0]
|
| 70 |
|
| 71 |
logits = np.transpose(logits, (0, 2, 3, 1))
|
| 72 |
-
seg = np.argmax(logits, axis=-1)[0].astype(
|
| 73 |
-
seg = cv2.resize(seg, (640, 640)).astype(
|
| 74 |
-
|
| 75 |
color_seg = np.zeros(
|
| 76 |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
| 77 |
) # height, width, 3
|
|
@@ -84,11 +91,12 @@ def sepia(input_img):
|
|
| 84 |
|
| 85 |
# Show image + mask
|
| 86 |
pred_img = img * 0.5 + color_seg * 0.5
|
| 87 |
-
pred_img = pred_img.astype(np.uint8)
|
| 88 |
|
| 89 |
fig = draw_plot(pred_img, seg)
|
| 90 |
return fig
|
| 91 |
|
|
|
|
| 92 |
title = "SegFormer(ADE20k) in TensorFlow"
|
| 93 |
description = """
|
| 94 |
|
|
@@ -96,12 +104,14 @@ This is demo TensorFlow SegFormer from 🤗 `transformers` official package. The
|
|
| 96 |
|
| 97 |
"""
|
| 98 |
|
| 99 |
-
demo = gr.Interface(
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import csv
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
|
| 5 |
import cv2
|
| 6 |
+
import gradio as gr
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
import onnxruntime as ort
|
| 10 |
+
from matplotlib import gridspec
|
| 11 |
|
| 12 |
ade_palette = []
|
| 13 |
labels_list = []
|
| 14 |
|
| 15 |
csv.field_size_limit(sys.maxsize)
|
| 16 |
|
| 17 |
+
with open(r"labels.txt", "r") as fp:
|
| 18 |
for line in fp:
|
| 19 |
labels_list.append(line[:-1])
|
| 20 |
|
| 21 |
+
with open(r"ade_palette.txt", "r") as fp:
|
| 22 |
for line in fp:
|
| 23 |
+
tmp_list = list(map(int, line[:-1].strip("][").split(", ")))
|
| 24 |
+
ade_palette.append(tmp_list)
|
| 25 |
|
| 26 |
colormap = np.asarray(ade_palette)
|
| 27 |
|
| 28 |
+
model_filename = "segformer-b5-finetuned-ade-640-640.onnx"
|
| 29 |
+
sess_options = ort.SessionOptions()
|
| 30 |
+
sess_options.intra_op_num_threads = os.cpu_count()
|
| 31 |
+
sess = ort.InferenceSession(
|
| 32 |
+
model_filename, sess_options, providers=["CPUExecutionProvider"]
|
| 33 |
+
)
|
| 34 |
|
| 35 |
|
| 36 |
def label_to_color_image(label):
|
|
|
|
| 42 |
|
| 43 |
return colormap[label]
|
| 44 |
|
| 45 |
+
|
| 46 |
def draw_plot(pred_img, seg):
|
| 47 |
fig = plt.figure(figsize=(20, 15))
|
| 48 |
|
|
|
|
| 50 |
|
| 51 |
plt.subplot(grid_spec[0])
|
| 52 |
plt.imshow(pred_img)
|
| 53 |
+
plt.axis("off")
|
| 54 |
|
| 55 |
LABEL_NAMES = np.asarray(labels_list)
|
| 56 |
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
|
|
|
| 65 |
ax.tick_params(width=0.0, labelsize=25)
|
| 66 |
return fig
|
| 67 |
|
| 68 |
+
|
| 69 |
def sepia(input_img):
|
| 70 |
img = cv2.imread(input_img)
|
| 71 |
img = cv2.resize(img, (640, 640)).astype(np.float32)
|
| 72 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 73 |
img_batch = np.expand_dims(img, axis=0)
|
| 74 |
img_batch = np.transpose(img_batch, (0, 3, 1, 2))
|
| 75 |
+
|
| 76 |
logits = sess.run(None, {"pixel_values": img_batch})[0]
|
| 77 |
|
| 78 |
logits = np.transpose(logits, (0, 2, 3, 1))
|
| 79 |
+
seg = np.argmax(logits, axis=-1)[0].astype("float32")
|
| 80 |
+
seg = cv2.resize(seg, (640, 640)).astype("uint8")
|
| 81 |
+
|
| 82 |
color_seg = np.zeros(
|
| 83 |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
| 84 |
) # height, width, 3
|
|
|
|
| 91 |
|
| 92 |
# Show image + mask
|
| 93 |
pred_img = img * 0.5 + color_seg * 0.5
|
| 94 |
+
pred_img = pred_img.astype(np.uint8)
|
| 95 |
|
| 96 |
fig = draw_plot(pred_img, seg)
|
| 97 |
return fig
|
| 98 |
|
| 99 |
+
|
| 100 |
title = "SegFormer(ADE20k) in TensorFlow"
|
| 101 |
description = """
|
| 102 |
|
|
|
|
| 104 |
|
| 105 |
"""
|
| 106 |
|
| 107 |
+
demo = gr.Interface(
|
| 108 |
+
sepia,
|
| 109 |
+
gr.inputs.Image(type="filepath"),
|
| 110 |
+
outputs=["plot"],
|
| 111 |
+
examples=["ADE_val_00000001.jpeg"],
|
| 112 |
+
allow_flagging="never",
|
| 113 |
+
title=title,
|
| 114 |
+
description=description,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
demo.launch()
|