Spaces:
Running
Running
| # setwd('~/Dropbox/ImageSeq/') | |
| options(error = NULL) | |
| library(shiny) | |
| library(dplyr) | |
| library(fields) # For image.plot in heatMap | |
| library(akima) # For interpolation | |
| # Load the data from sm.csv | |
| sm <- read.csv("sm.csv") | |
| # Define function to convert to numeric | |
| f2n <- function(x) as.numeric(as.character(x)) | |
| # Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims | |
| sm$MaxImageDimsLeft <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[1])) | |
| sm$MaxImageDimsRight <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[2])) | |
| # Heatmap function with optimal_point parameter | |
| heatMap <- function(x, y, z, | |
| main = "", | |
| N, yaxt = NULL, | |
| xlab = "", | |
| ylab = "", | |
| horizontal = FALSE, | |
| useLog = "", | |
| legend.width = 1, | |
| ylim = NULL, | |
| xlim = NULL, | |
| zlim = NULL, | |
| add.legend = TRUE, | |
| legend.only = FALSE, | |
| vline = NULL, | |
| col_vline = "black", | |
| hline = NULL, | |
| col_hline = "black", | |
| cex.lab = 2, | |
| cex.main = 2, | |
| myCol = NULL, | |
| includeMarginals = FALSE, | |
| marginalJitterSD_x = 0.01, | |
| marginalJitterSD_y = 0.01, | |
| openBrowser = FALSE, | |
| optimal_point = NULL) { | |
| if (openBrowser) { browser() } | |
| s_ <- akima::interp(x = x, y = y, z = z, | |
| xo = seq(min(x), max(x), length = N), | |
| yo = seq(min(y), max(y), length = N), | |
| duplicate = "mean") | |
| if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) } | |
| if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) } | |
| imageFxn <- if (add.legend) fields::image.plot else graphics::image | |
| if (!grepl(useLog, pattern = "z")) { | |
| imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main, | |
| cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim, | |
| legend.width = legend.width, horizontal = horizontal, yaxt = yaxt, | |
| zlim = zlim, legend.only = legend.only) | |
| } else { | |
| useLog <- gsub(useLog, pattern = "z", replace = "") | |
| zTicks <- summary(c(s_$z)) | |
| ep_ <- 0.001 | |
| zTicks[zTicks < ep_] <- ep_ | |
| zTicks <- exp(seq(log(min(zTicks)), log(max(zTicks)), length.out = 10)) | |
| zTicks <- round(zTicks, abs(min(log(zTicks, base = 10)))) | |
| s_$z[s_$z < ep_] <- ep_ | |
| imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt, | |
| axis.args = list(at = log(zTicks), labels = zTicks), | |
| main = main, cex.main = cex.main, xlab = xlab, ylab = ylab, | |
| log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim, | |
| horizontal = horizontal, col = myCol, legend.width = legend.width, | |
| zlim = zlim, legend.only = legend.only) | |
| } | |
| if (!is.null(vline)) { abline(v = vline, lwd = 10, col = col_vline) } | |
| if (!is.null(hline)) { abline(h = hline, lwd = 10, col = col_hline) } | |
| if (includeMarginals) { | |
| points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x)), | |
| rep(ylim[1] * 1.1, length(y)), pch = "|", col = "darkgray") | |
| points(rep(xlim[1] * 1.1, length(x)), | |
| y + rnorm(length(y), sd = sd(y) * marginalJitterSD_y), pch = "-", col = "darkgray") | |
| } | |
| # Add green star at optimal point if provided | |
| if (!is.null(optimal_point)) { | |
| points(optimal_point$x, optimal_point$y, pch = 8, col = "green", cex = 3, lwd = 4) | |
| } | |
| } | |
| ############################################################################## | |
| # IMPORTANT: Store the meaningful labels for metric in a named vector. | |
| # The "name" is what is displayed to the user in the dropdown, | |
| # while the "value" is the underlying column in the dataset. | |
| ############################################################################## | |
| metric_choices <- c( | |
| "Mean AUTOC RATE Ratio" = "AUTOC_rate_std_ratio_mean", | |
| "Mean AUTOC RATE" = "AUTOC_rate_mean", | |
| "Mean SD of AUTOC RATE" = "AUTOC_rate_std_mean", | |
| "Mean AUTOC RATE Ratio with PC" = "AUTOC_rate_std_ratio_mean_pc", | |
| "Mean AUTOC RATE with PC" = "AUTOC_rate_mean_pc", | |
| "Mean SD of AUTOC RATE with PC" = "AUTOC_rate_std_mean_pc", | |
| "Mean Variable Importance (Image 1)" = "MeanVImportHalf1", | |
| "Mean Variable Importance (Image 2)" = "MeanVImportHalf2", | |
| "Mean Fraction of Top k Features (Image 1)" = "FracTopkHalf1", | |
| "Mean RMSE" = "RMSE" | |
| ) | |
| ############################################################################## | |
| # Helper function to retrieve the *label* from its code | |
| ############################################################################## | |
| getMetricLabel <- function(metric_value) { | |
| # This returns, e.g., "Mean AUTOC RATE" if metric_value == "AUTOC_rate_mean". | |
| # If it doesn't find a match, return the code itself. | |
| lbl <- names(metric_choices)[which(metric_choices == metric_value)] | |
| if (length(lbl) == 0) return(metric_value) | |
| lbl | |
| } | |
| # UI Definition | |
| ui <- fluidPage( | |
| titlePanel("Multiscale Representations Explorer"), | |
| tags$p( | |
| style = "text-align: left; margin-top: -10px;", | |
| tags$a( | |
| href = "https://planetarycausalinference.org/", | |
| target = "_blank", | |
| title = "PlanetaryCausalInference.org", | |
| style = "color: #337ab7; text-decoration: none;", | |
| "PlanetaryCausalInference.org ", | |
| icon("external-link", style = "font-size: 12px;") | |
| ) | |
| ), | |
| # ---- Here is the minimal "Share" button HTML + JS inlined in Shiny ---- | |
| # We wrap it in tags$div(...) and tags$script(HTML(...)) so it is recognized | |
| # by Shiny. You can adjust the styling or placement as needed. | |
| tags$div( | |
| style = "text-align: left; margin: 1em 0 1em 0em;", | |
| HTML(' | |
| <button id="share-button" | |
| style=" | |
| display: inline-flex; | |
| align-items: center; | |
| justify-content: center; | |
| gap: 8px; | |
| padding: 5px 10px; | |
| font-size: 16px; | |
| font-weight: normal; | |
| color: #000; | |
| background-color: #fff; | |
| border: 1px solid #ddd; | |
| border-radius: 6px; | |
| cursor: pointer; | |
| box-shadow: 0 1.5px 0 #000; | |
| "> | |
| <svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" | |
| stroke-width="2" stroke-linecap="round" stroke-linejoin="round"> | |
| <circle cx="18" cy="5" r="3"></circle> | |
| <circle cx="6" cy="12" r="3"></circle> | |
| <circle cx="18" cy="19" r="3"></circle> | |
| <line x1="8.59" y1="13.51" x2="15.42" y2="17.49"></line> | |
| <line x1="15.41" y1="6.51" x2="8.59" y2="10.49"></line> | |
| </svg> | |
| <strong>Share</strong> | |
| </button> | |
| '), | |
| # Insert the JS as well | |
| tags$script( | |
| HTML(" | |
| (function() { | |
| const shareBtn = document.getElementById('share-button'); | |
| // Reusable helper function to show a small “Copied!” message | |
| function showCopyNotification() { | |
| const notification = document.createElement('div'); | |
| notification.innerText = 'Copied to clipboard'; | |
| notification.style.position = 'fixed'; | |
| notification.style.bottom = '20px'; | |
| notification.style.right = '20px'; | |
| notification.style.backgroundColor = 'rgba(0, 0, 0, 0.8)'; | |
| notification.style.color = '#fff'; | |
| notification.style.padding = '8px 12px'; | |
| notification.style.borderRadius = '4px'; | |
| notification.style.zIndex = '9999'; | |
| document.body.appendChild(notification); | |
| setTimeout(() => { notification.remove(); }, 2000); | |
| } | |
| shareBtn.addEventListener('click', function() { | |
| const currentURL = window.location.href; | |
| const pageTitle = document.title || 'Check this out!'; | |
| // If browser supports Web Share API | |
| if (navigator.share) { | |
| navigator.share({ | |
| title: pageTitle, | |
| text: '', | |
| url: currentURL | |
| }) | |
| .catch((error) => { | |
| console.log('Sharing failed', error); | |
| }); | |
| } else { | |
| // Fallback: Copy URL | |
| if (navigator.clipboard && navigator.clipboard.writeText) { | |
| navigator.clipboard.writeText(currentURL).then(() => { | |
| showCopyNotification(); | |
| }, (err) => { | |
| console.error('Could not copy text: ', err); | |
| }); | |
| } else { | |
| // Double fallback for older browsers | |
| const textArea = document.createElement('textarea'); | |
| textArea.value = currentURL; | |
| document.body.appendChild(textArea); | |
| textArea.select(); | |
| try { | |
| document.execCommand('copy'); | |
| showCopyNotification(); | |
| } catch (err) { | |
| alert('Please copy this link:\\n' + currentURL); | |
| } | |
| document.body.removeChild(textArea); | |
| } | |
| } | |
| }); | |
| })(); | |
| ") | |
| ) | |
| ), | |
| # ---- End: Minimal Share button snippet ---- | |
| sidebarLayout( | |
| sidebarPanel( | |
| selectInput("application", "Application", | |
| choices = unique(sm$application), | |
| selected = unique(sm$application)[1]), | |
| selectInput("model", "Model", | |
| choices = unique(sm$optimizeImageRep), | |
| selected = "clip-rsicd"), | |
| ######################################################################## | |
| # Use our named vector 'metric_choices' directly in selectInput | |
| ######################################################################## | |
| selectInput("metric", "Metric", | |
| choices = metric_choices, | |
| selected = "AUTOC_rate_std_ratio_mean"), | |
| checkboxInput("compareToBest", "Compare to best single scale", value = FALSE) | |
| ), | |
| mainPanel( | |
| plotOutput("heatmapPlot", height = "600px"), | |
| div(style = "margin-top: 10px; font-style: italic;", uiOutput("contextNote")) | |
| ) | |
| ) | |
| ) | |
| # Server Definition | |
| server <- function(input, output) { | |
| # Function to determine whether to maximize or minimize the metric | |
| get_better_direction <- function(metric) { | |
| #if (grepl("std|RMSE", metric)) "min" else "max" | |
| if (grepl(metric, pattern = "std_mean|RMSE")) "min" else "max" | |
| } | |
| # Reactive data processing | |
| filteredData <- reactive({ | |
| df <- sm %>% | |
| filter(application == input$application, | |
| optimizeImageRep == input$model) %>% | |
| mutate(MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight), | |
| MaxImageDimsLeft, | |
| MaxImageDimsRight)) | |
| if (nrow(df) == 0) return(NULL) | |
| df | |
| }) | |
| # Reactive expression to compute interpolated data and optimal point | |
| interpolated_data <- reactive({ | |
| data <- filteredData() | |
| if (is.null(data)) return(NULL) | |
| # Group data | |
| grouped_data <- data %>% | |
| group_by(MaxImageDimsLeft, MaxImageDimsRight) %>% | |
| summarise( | |
| mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE), | |
| se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()), | |
| n = n(), | |
| .groups = "drop" | |
| ) | |
| better_dir <- get_better_direction(input$metric) | |
| single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight) | |
| best_single_scale_metric <- if (nrow(single_scale_data) > 0) { | |
| if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE) | |
| else min(single_scale_data$mean_metric, na.rm = TRUE) | |
| } else NA | |
| grouped_data <- grouped_data %>% | |
| mutate(improvement = if (better_dir == "max") { | |
| mean_metric - best_single_scale_metric | |
| } else { | |
| best_single_scale_metric - mean_metric | |
| }) | |
| # Select z based on checkbox | |
| z_to_interpolate <- if (input$compareToBest) grouped_data$improvement else grouped_data$mean_metric | |
| x <- grouped_data$MaxImageDimsLeft | |
| y <- grouped_data$MaxImageDimsRight | |
| # Check if interpolation is possible | |
| if (length(unique(x)) < 2 || length(unique(y)) < 2 || nrow(grouped_data) < 3) { | |
| return(NULL) | |
| } | |
| # Compute interpolated grid | |
| s_ <- akima::interp( | |
| x = x, | |
| y = y, | |
| z = z_to_interpolate, | |
| xo = seq(min(x), max(x), length = 50), | |
| yo = seq(min(y), max(y), length = 50), | |
| duplicate = "mean" | |
| ) | |
| # Find optimal point from interpolated grid | |
| max_idx <- if (input$compareToBest || better_dir == "max") { | |
| which.max(s_$z) | |
| } else { | |
| which.min(s_$z) | |
| } | |
| row_col <- arrayInd(max_idx, .dim = dim(s_$z)) | |
| optimal_x <- s_$x[row_col[1,1]] | |
| optimal_y <- s_$y[row_col[1,2]] | |
| optimal_z <- s_$z[row_col[1,1], row_col[1,2]] | |
| list( | |
| s_ = s_, | |
| optimal_point = list(x = optimal_x, y = optimal_y, z = optimal_z) | |
| ) | |
| }) | |
| # Heatmap Output | |
| output$heatmapPlot <- renderPlot({ | |
| interp_data <- interpolated_data() | |
| if (is.null(interp_data)) { | |
| plot.new() | |
| text(0.5, 0.5, "Insufficient data for interpolation", cex = 1.5) | |
| return(NULL) | |
| } | |
| data <- filteredData() | |
| grouped_data <- data %>% | |
| group_by(MaxImageDimsLeft, MaxImageDimsRight) %>% | |
| summarise( | |
| mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE), | |
| .groups = "drop" | |
| ) | |
| better_dir <- get_better_direction(input$metric) | |
| single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight) | |
| best_single_scale_metric <- if (nrow(single_scale_data) > 0) { | |
| if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE) | |
| else min(single_scale_data$mean_metric, na.rm = TRUE) | |
| } else NA | |
| grouped_data <- grouped_data %>% | |
| mutate(improvement = if (better_dir == "max") { | |
| mean_metric - best_single_scale_metric | |
| } else { | |
| best_single_scale_metric - mean_metric | |
| }) | |
| # Retrieve the *label* for the chosen metric: | |
| chosen_metric_label <- getMetricLabel(input$metric) | |
| if (input$compareToBest) { | |
| z <- grouped_data$improvement | |
| main_title <- paste(input$application, "-", chosen_metric_label, "\n Improvement Over Best Single Scale") | |
| } else { | |
| z <- grouped_data$mean_metric | |
| main_title <- paste(input$application, "-", chosen_metric_label) | |
| } | |
| x <- grouped_data$MaxImageDimsLeft | |
| y <- grouped_data$MaxImageDimsRight | |
| zlim <- range(z, na.rm = TRUE) | |
| par(mar=c(5,5,5,1)) | |
| customPalette <- colorRampPalette(c("blue", "white", "red"))(50) | |
| heatMap( | |
| x = x, | |
| y = y, | |
| z = z, | |
| N = 50, | |
| main = main_title, | |
| xlab = "Image Dimension 1", | |
| ylab = "Image Dimension 2", | |
| useLog = "xy", | |
| myCol = customPalette, | |
| cex.lab = 1.4, | |
| zlim = zlim, | |
| optimal_point = interp_data$optimal_point | |
| ) | |
| }) | |
| # Contextual Note Output | |
| output$contextNote <- renderText({ | |
| SharedContextText <- c( | |
| "The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.", | |
| "The Uganda RCT involves a cash grant program to stimulate human capital and living conditions among the poor.", | |
| "For more information, see the associated paper, <a href='https://arxiv.org/abs/2411.02134' target='_blank'>arXiv.org/abs/2411.02134</a> | |
| (<a href='https://connorjerzak.com/wp-content/uploads/2024/11/MultilevelBib.txt' target='_blank'>BibTex</a>), | |
| and <a href='https://www.youtube.com/watch?v=RvAoJGMlKAI' target='_blank'>YouTube tutorial</a>. | |
| ", | |
| "<div style='font-size: 10px; line-height: 1.5;'>", | |
| "<b>Glossary:</b><br>", | |
| "• <b>Model:</b> The neural-network backbone (e.g., clip-rsicd) transforming satellite images into numerical representations.<br>", | |
| "• <b>Metric:</b> The criterion (e.g., RATE Ratio, RMSE) measuring performance or heterogeneity detection.<br>", | |
| "• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>", | |
| "• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>", | |
| "• <b>RATE Ratio:</b> A t-statistic-like quantity indicating how much a data-model combination captures treatment-effect variation. Ratio of the RATE and its standard error. It can employ two weighting scemes (AUTOC and Qini).<br>", | |
| "• <b>PC:</b> Principal Components; a compression step of neural representations.<br>", | |
| "• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>", | |
| "• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>", | |
| "</div>" | |
| ) | |
| chosen_metric_label <- getMetricLabel(input$metric) | |
| if (input$compareToBest) { | |
| c( | |
| paste( | |
| "This heatmap shows the improvement in", | |
| paste0("'", chosen_metric_label, "'"), | |
| "over the best single scale for", | |
| input$application, | |
| "using the", input$model, "model. The green star marks the optimal point." | |
| ), | |
| SharedContextText | |
| ) | |
| } else { | |
| c( | |
| paste( | |
| "This heatmap displays", | |
| paste0("'", chosen_metric_label, "'"), | |
| "for", input$application, | |
| "using the", input$model, | |
| "model across different image dimension combinations. The green star marks the optimal point." | |
| ), | |
| SharedContextText | |
| ) | |
| } | |
| }) | |
| } | |
| # Run the Shiny App | |
| shinyApp(ui = ui, server = server) | |